Machine Learning
- Contents
- Lec1. Introduction
- Lec2. Learning (Supervised learning, Unsupervised learning)
mov1
mov2
mov3
- Lec3. Regression (Linear regression, Gradient descent, Normal equation)
example
- Lec4. Regression (Locally weighted regression, Probabilistic interpretation, Logistic regression, Newton's method)
example
- Lec5. Generative learning algorithm (Perceptron, Gaussian discriminant, Naive Bayes)
example
- Lec6. Support Vector Machine (Functional margin, Geometric margin, Optimal margin classifier)
example
- Lec7. Kernal (Kernel trick, Optimal margin classifier)
example
- Lec8. Train (Bias, Variance, Regularization, Train)
- Lec9. Decision Tree (Decision tree, Ensemble(Bagging, Boosting))
- Lec10. Deep learning (Neural network, activation function, loss function)
- Lec11. Deep learning (Optimization, Backpropagation, Mini-batches)
- Lec12. Reinforcement learning (Markov decision process, Bellman equation)
- Lec13. Reinforcement learning (Q-learning, Deep Q network)