
INTELLIGENT NETWORKING LAB.

Process in a System

INTELLIGENT NETWORKING LAB. 1

Program vs. Process

 Program
 Executable file on a disk
 Loaded into memory and executed by the kernel

 Process
 Executing instance of a program
 The basic unit of execution and scheduling
 A process is named using its process ID (PID)
Other IDs associated with a process

 Real User ID
 Real Group ID
 Effective User ID
 Effective Group ID
 etc.

INTELLIGENT NETWORKING LAB. 2

Process State

 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned
 terminated: the process has finished execution

INTELLIGENT NETWORKING LAB. 3

Process State (cont’d)

 <ps> command

R: Runnable
S: Sleeping
T: Traced or Stopped
D: Uninterruptible Sleep
Z: Zombie

INTELLIGENT NETWORKING LAB. 4

IDs associated with a process

 Get various IDs
#include <sys/types.h>
#include <unistd.h>

 pid_t getpid(void);
 return: process ID of calling process

 pid_t getppid(void);
 return: parent process ID of calling process

 uid_t getuid(void);
 return: real user ID of calling process

 uid_t geteuid(void);
 return: effective user ID of calling process

 gid_t getgid(void);
 return: group ID of calling process

 gid_t getegid(void);
 reutrnL effective group ID of calling process

INTELLIGENT NETWORKING LAB. 5

Create a new process

 fork: the only way a new process is created
#include <sys/types.h>
#include <unistd.h>
 pid_t fork(void);
 return: 0 in child, process ID of child in parent, -1 on error

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
main() {

int pid;
if ((pid = fork()) == 0)

/* child */
printf(“I am %d. My parent is %d\n”, getpid(), getppid());

else
/* parent */
printf(“I am %d. My child is %d\n”, getpid(), pid);

}

INTELLIGENT NETWORKING LAB. 6

Create a new process (cont’d)

 Why fork() ?  Very useful when the child..
 is cooperating with the parent
 relies upon the parent’s data to accomplish its task
 example: Web server

while (1) {
int sock = accept();
if ((pid = fork()) == 0) {

/* Handle client request */

} else {
/* Close socket */

}
}

INTELLIGENT NETWORKING LAB. 7

Create a new process (cont’d)

 Sharing of open files between parent and child after fork

INTELLIGENT NETWORKING LAB. 8

Exercise

 fork example
$ arm-linux-gnueabihf-gcc –o fork fork.c (or make fork)

move “fork” to the target board
$./fork

INTELLIGENT NETWORKING LAB. 9

Terminate a process

 Normal termination
 return from main()
 calling exit()
 calling _exit()

 Abnormal termination
 calling abort()
 terminated by a signal

INTELLIGENT NETWORKING LAB. 10

Start and Termination of a C program

INTELLIGENT NETWORKING LAB. 11

Terminate a process

 exit
#include <stdlib.h>
 void exit(int status);
 return: 0 if OK, nonzero on error

#include <unistd.h>
 void _exit(int status);
 return: 0 if OK, nonzero on error

 Register an exit handler
#include <stdlib.h>
 int atexit(void (*func)(void));
 return: 0 if OK, nonzero on error

INTELLIGENT NETWORKING LAB. 12

Exercise

 atexit example
$ arm-linux-gnueabihf-gcc –o exit exit.c (or make exit)

move “exit” to the target board
$./exit

INTELLIGENT NETWORKING LAB. 13

Wait for process termination

 wait
#include <sys/types.h>
#include <sys/wait.h>

 pid_t wait(int *statloc);
 pid_t waitpid(pid_t pid, int *statloc, int options);
 return: process ID if OK, 0 or -1 on error

With WNOHANG option, waitpid will not block if a child specified by pid is not
immediately available. In this case, the return is 0

 The calling process will
 block (if all of its children are still running)
 return immediately with the termination status of a child (if a child has terminated and

is waiting for its termination status to be fetched)
 return immediately with an error (if it doesn’t have any child processes)

INTELLIGENT NETWORKING LAB. 14

Exercise

 wait example
$ arm-linux-gnueabihf-gcc -o wait wait.c (or make wait)
$./wait (in the target board)

 a program with race condition
$ arm-linux-gnueabihf-gcc –o race race.c (or make race)
$./race (in the target board)

 modification to avoid race condition using wait system call
$ arm-linux-gnueabihf-gcc –o worace worace.c (or make worace)
$./worace (in the target board)

INTELLIGENT NETWORKING LAB. 15

Execute another program in a program

 exec
#include <unistd.h>

 int execl(char *pathname, char *arg0, … /* (char *) 0 */);
 int execv(char *pathname, char *argv[]);
 int execle(char *pathname, char *arg0, … /* (char *) 0,

char *envp[] */);
 int execve(char *pathname, char *argv[], char *envp[]);
 int execlp(char *filename, char *arg0, … /* (char *) 0 */);
 int execvp(char *filename, char *argv[]);
 return: -1 on error, no return on success

INTELLIGENT NETWORKING LAB. 16

Execute a command string in a program

 system
#include <stdlib.h>

 int system(char *cmdstring);
 return: termination status of the shell if OK, -1 on error
 system is implemented by calling fork, exec, and waitpid

#include <stdio.h>
#include <stdlib.h>
main()
{

system("ls -al“);
system(“date”);
system(“who”);

}

INTELLIGENT NETWORKING LAB. 17

Exercise

 Access environment variables
$ arm-linux-gnueabihf-gcc –o env env.c (or make env)
$./env

 exec example
$ arm-linux-gnueabihf-gcc –o exec exec.c (or make exec)
$./exec

 system example
$ arm-linux-gnueabihf-gcc –o system system.c (or make system)
$./system

INTELLIGENT NETWORKING LAB. 18

Thread

 Why thread?
Web server example using thread

We can create a new thread for each request

webserver()
{

while(1) {
int sock = accept();
thread_fork(handle_request, sock);

}
}

Handle_request(int sock)
{

/* process request */
close(sock);

}

INTELLIGENT NETWORKING LAB. 19

Thread (cont'd)

 Why thread? (cont'd)
 Responsiveness
 Resource sharing
 Economy
 Utilization of MP architectures

INTELLIGENT NETWORKING LAB. 20

Thread concept

 Separate the concept of a process from its execution state
 Process: address space, resources, other general process attributes
 Execution state: PC, SP, registers, etc.

 This execution state is usually called
 A thread of control
 A thread, or
 A lightweight process (LWP)

INTELLIGENT NETWORKING LAB. 21

Thread concept (cont’d)

INTELLIGENT NETWORKING LAB. 22

Thread implementation

INTELLIGENT NETWORKING LAB. 23

Thread implementation (cont’d)

 User-level threads
 The user-level threads library implements thread operations
 They are small and fast
 User-level threads are invisible to the OS
OS may make poor decisions

 E.g. blocking I/O

 Kernel-level threads
 All thread operations are implemented in the kernel
 The OS schedules all of the threads in a system
 Kernel threads are cheaper than processes
 They can still be too expensive

INTELLIGENT NETWORKING LAB. 24

Thread implementation (cont’d)

 Pthreads
 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
 API specifies behavior of the thread library, implementation is up to development of the

library
 Common in UNIX operating systems
 Link with –lpthread option

 Linux implementation
 Kernel-level implementation, but..

 a modified process(or task) per thread
 System call clone() for thread creation
NGPT (Next Generation POSIX Threading) by IBM

INTELLIGENT NETWORKING LAB. 25

Pthread libraries for thread control

 Create a thread
#include <pthread.h>
 int pthread_create(pthread_t *tid, pthread_attr_t *attr,

void *(start_routine)(void *), void *arg);
 return: 0 if OK, nonzero on error

 Terminate a thread
#include <pthread.h>
 void pthread_exit(void *retval);

 Wait for termination of another thread
#include <pthread.h>
 int pthread_join(pthread_t tid, void **tread_return);
 return:0 if OK, nonzero on error

INTELLIGENT NETWORKING LAB. 26

Exercise

 Pthread example
$ arm-linux-gnueabihf-gcc –o thread thread.c –lpthread (or make thread)
$./thread

 Command-line process: iteration version using one process
$ arm-linux-gnueabihf-gcc –o cmd_i cmd_i.c (or make cmd_i)
$./cmd_i
CMD> doit
Doing doit
Done
CMD> quit

 Command-line processor: a process per command
$ arm-linux-gnueabihf-gcc –o cmd_p cmd_p.c (or make cmd_p)
$./ cmd_p

 Command-line processor: a thread per command
$ arm-linux-gnueabihf-gcc –o cmd_t cmd_t.c (or make cmd_t)
$./ cmd_t

INTELLIGENT NETWORKING LAB.

E N D

