
INTELLIGENT NETWORKING LAB.

Process in a System

INTELLIGENT NETWORKING LAB. 1

Program vs. Process

 Program
 Executable file on a disk
 Loaded into memory and executed by the kernel

 Process
 Executing instance of a program
 The basic unit of execution and scheduling
 A process is named using its process ID (PID)
Other IDs associated with a process

 Real User ID
 Real Group ID
 Effective User ID
 Effective Group ID
 etc.

INTELLIGENT NETWORKING LAB. 2

Process State

 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned
 terminated: the process has finished execution

INTELLIGENT NETWORKING LAB. 3

Process State (cont’d)

 <ps> command

R: Runnable
S: Sleeping
T: Traced or Stopped
D: Uninterruptible Sleep
Z: Zombie

INTELLIGENT NETWORKING LAB. 4

IDs associated with a process

 Get various IDs
#include <sys/types.h>
#include <unistd.h>

 pid_t getpid(void);
 return: process ID of calling process

 pid_t getppid(void);
 return: parent process ID of calling process

 uid_t getuid(void);
 return: real user ID of calling process

 uid_t geteuid(void);
 return: effective user ID of calling process

 gid_t getgid(void);
 return: group ID of calling process

 gid_t getegid(void);
 reutrnL effective group ID of calling process

INTELLIGENT NETWORKING LAB. 5

Create a new process

 fork: the only way a new process is created
#include <sys/types.h>
#include <unistd.h>
 pid_t fork(void);
 return: 0 in child, process ID of child in parent, -1 on error

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
main() {

int pid;
if ((pid = fork()) == 0)

/* child */
printf(“I am %d. My parent is %d\n”, getpid(), getppid());

else
/* parent */
printf(“I am %d. My child is %d\n”, getpid(), pid);

}

INTELLIGENT NETWORKING LAB. 6

Create a new process (cont’d)

 Why fork() ? Very useful when the child..
 is cooperating with the parent
 relies upon the parent’s data to accomplish its task
 example: Web server

while (1) {
int sock = accept();
if ((pid = fork()) == 0) {

/* Handle client request */

} else {
/* Close socket */

}
}

INTELLIGENT NETWORKING LAB. 7

Create a new process (cont’d)

 Sharing of open files between parent and child after fork

INTELLIGENT NETWORKING LAB. 8

Exercise

 fork example
$ arm-linux-gnueabihf-gcc –o fork fork.c (or make fork)

move “fork” to the target board
$./fork

INTELLIGENT NETWORKING LAB. 9

Terminate a process

 Normal termination
 return from main()
 calling exit()
 calling _exit()

 Abnormal termination
 calling abort()
 terminated by a signal

INTELLIGENT NETWORKING LAB. 10

Start and Termination of a C program

INTELLIGENT NETWORKING LAB. 11

Terminate a process

 exit
#include <stdlib.h>
 void exit(int status);
 return: 0 if OK, nonzero on error

#include <unistd.h>
 void _exit(int status);
 return: 0 if OK, nonzero on error

 Register an exit handler
#include <stdlib.h>
 int atexit(void (*func)(void));
 return: 0 if OK, nonzero on error

INTELLIGENT NETWORKING LAB. 12

Exercise

 atexit example
$ arm-linux-gnueabihf-gcc –o exit exit.c (or make exit)

move “exit” to the target board
$./exit

INTELLIGENT NETWORKING LAB. 13

Wait for process termination

 wait
#include <sys/types.h>
#include <sys/wait.h>

 pid_t wait(int *statloc);
 pid_t waitpid(pid_t pid, int *statloc, int options);
 return: process ID if OK, 0 or -1 on error

With WNOHANG option, waitpid will not block if a child specified by pid is not
immediately available. In this case, the return is 0

 The calling process will
 block (if all of its children are still running)
 return immediately with the termination status of a child (if a child has terminated and

is waiting for its termination status to be fetched)
 return immediately with an error (if it doesn’t have any child processes)

INTELLIGENT NETWORKING LAB. 14

Exercise

 wait example
$ arm-linux-gnueabihf-gcc -o wait wait.c (or make wait)
$./wait (in the target board)

 a program with race condition
$ arm-linux-gnueabihf-gcc –o race race.c (or make race)
$./race (in the target board)

 modification to avoid race condition using wait system call
$ arm-linux-gnueabihf-gcc –o worace worace.c (or make worace)
$./worace (in the target board)

INTELLIGENT NETWORKING LAB. 15

Execute another program in a program

 exec
#include <unistd.h>

 int execl(char *pathname, char *arg0, … /* (char *) 0 */);
 int execv(char *pathname, char *argv[]);
 int execle(char *pathname, char *arg0, … /* (char *) 0,

char *envp[] */);
 int execve(char *pathname, char *argv[], char *envp[]);
 int execlp(char *filename, char *arg0, … /* (char *) 0 */);
 int execvp(char *filename, char *argv[]);
 return: -1 on error, no return on success

INTELLIGENT NETWORKING LAB. 16

Execute a command string in a program

 system
#include <stdlib.h>

 int system(char *cmdstring);
 return: termination status of the shell if OK, -1 on error
 system is implemented by calling fork, exec, and waitpid

#include <stdio.h>
#include <stdlib.h>
main()
{

system("ls -al“);
system(“date”);
system(“who”);

}

INTELLIGENT NETWORKING LAB. 17

Exercise

 Access environment variables
$ arm-linux-gnueabihf-gcc –o env env.c (or make env)
$./env

 exec example
$ arm-linux-gnueabihf-gcc –o exec exec.c (or make exec)
$./exec

 system example
$ arm-linux-gnueabihf-gcc –o system system.c (or make system)
$./system

INTELLIGENT NETWORKING LAB. 18

Thread

 Why thread?
Web server example using thread

We can create a new thread for each request

webserver()
{

while(1) {
int sock = accept();
thread_fork(handle_request, sock);

}
}

Handle_request(int sock)
{

/* process request */
close(sock);

}

INTELLIGENT NETWORKING LAB. 19

Thread (cont'd)

 Why thread? (cont'd)
 Responsiveness
 Resource sharing
 Economy
 Utilization of MP architectures

INTELLIGENT NETWORKING LAB. 20

Thread concept

 Separate the concept of a process from its execution state
 Process: address space, resources, other general process attributes
 Execution state: PC, SP, registers, etc.

 This execution state is usually called
 A thread of control
 A thread, or
 A lightweight process (LWP)

INTELLIGENT NETWORKING LAB. 21

Thread concept (cont’d)

INTELLIGENT NETWORKING LAB. 22

Thread implementation

INTELLIGENT NETWORKING LAB. 23

Thread implementation (cont’d)

 User-level threads
 The user-level threads library implements thread operations
 They are small and fast
 User-level threads are invisible to the OS
OS may make poor decisions

 E.g. blocking I/O

 Kernel-level threads
 All thread operations are implemented in the kernel
 The OS schedules all of the threads in a system
 Kernel threads are cheaper than processes
 They can still be too expensive

INTELLIGENT NETWORKING LAB. 24

Thread implementation (cont’d)

 Pthreads
 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
 API specifies behavior of the thread library, implementation is up to development of the

library
 Common in UNIX operating systems
 Link with –lpthread option

 Linux implementation
 Kernel-level implementation, but..

 a modified process(or task) per thread
 System call clone() for thread creation
NGPT (Next Generation POSIX Threading) by IBM

INTELLIGENT NETWORKING LAB. 25

Pthread libraries for thread control

 Create a thread
#include <pthread.h>
 int pthread_create(pthread_t *tid, pthread_attr_t *attr,

void *(start_routine)(void *), void *arg);
 return: 0 if OK, nonzero on error

 Terminate a thread
#include <pthread.h>
 void pthread_exit(void *retval);

 Wait for termination of another thread
#include <pthread.h>
 int pthread_join(pthread_t tid, void **tread_return);
 return:0 if OK, nonzero on error

INTELLIGENT NETWORKING LAB. 26

Exercise

 Pthread example
$ arm-linux-gnueabihf-gcc –o thread thread.c –lpthread (or make thread)
$./thread

 Command-line process: iteration version using one process
$ arm-linux-gnueabihf-gcc –o cmd_i cmd_i.c (or make cmd_i)
$./cmd_i
CMD> doit
Doing doit
Done
CMD> quit

 Command-line processor: a process per command
$ arm-linux-gnueabihf-gcc –o cmd_p cmd_p.c (or make cmd_p)
$./ cmd_p

 Command-line processor: a thread per command
$ arm-linux-gnueabihf-gcc –o cmd_t cmd_t.c (or make cmd_t)
$./ cmd_t

INTELLIGENT NETWORKING LAB.

E N D

