Computer Network and Internet

Contents

- What is the Internet?
- Network edge
 ✓ End system, Access networks, Links
- Network core
 - ✓ Packet switching, Circuit switching, Network structure
- Performance
 - ✓ Delay, loss, throughput
- Protocol layers, Service models
 ✓ IP protocol stack & OSI 7 layers

What is the Internet?: 구성 요소 관점

- 디바이스 (connected devices)
 - \checkmark hosts = end systems
 - ✓ network apps 사용

통신 링크 (communication links)
 ✓ 데이터 전송을 위한 매체

패킷 스위칭 (packet switches)
 ✓ 데이터 패킷의 전송(forward packets)
 ✓ 라우터와 스위칭 장비 사용

router

What is the Internet?: 구성 요소 관점 • 인터넷: 네트워크들의 네트워크 \checkmark Internet is a network of networks protocols define format, order of messages sent received and among ■ 프로토콜 (protocol) network entities, ✓ 통신규약 actions taken on message ✔ 데이터 메시지의 송신 및 수신 제어 transmission, receipt Subscriber High-speed link connection (e.g. SONET) Residential Internet service user provider (ISP) Router Internet

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

and

What is the Internet?: 구성 요소 관점

- 애플리케이션에 서비스를 제공하는 인프 라스트럭쳐
 - ✓ infrastructure that provides services to applications:
 - Web, email, games, e-commerce, etc.
- 애플리케이션에 프로그래밍 인터페이스를 제공
 - ✓ provides programming interface to apps
 - ▷ 인터넷에 연결하여 애플리케이션의 송신 및 수신을 허용함

Network Edge – Network Architecture

- 네트워크 엣지 (Network edge)
 ✓ 호스트(hosts): clients and servers
 ✓ servers often in data centers
- 액세스 네트워크 및 물리 매체

(Access networks, physical media)
✓ 유무선 통신링크
✓ wired and wireless communication links

네트워크 코어 (Network core)
 ✓ 네트워크들의 네트워크
 ✓ a network of networks
 ✓ 라우터들로 연결된 네트워크

Access networks

- Q: How to connect end systems to edge router?
 - ✓ 가정 네트워크 (Residential access network)
 - ✓ 기관 네트워크 (Institutional access network)
 - ✔ 이동 네트워크 (Mobile access network)

• Keep in mind:

 ✓ 액세스 네트워크의 대역폭이란? (Bandwidth (bits per second) of access network?)
 ✓ Shared or dedicated?

Access network: Home

Access network: Enterprise

- 회사 및 대학과 같은 기관에서 주로 사용
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps
- 최근 end system은 이더넷 스위치에 연결됨

(today, end systems typically connect into Ethernet switch)

Access network: Wireless

- 공유된 무선 액세스 네트워크를 통해 end system이 라우터와 연결 (shared wireless access network connects end system to router)
 - ✓ via base station aka "access point"

wireless LANs:

- within building (100 ft.)
- 802.11b/g/n/ac (WiFi): 11, 54, 450 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10' s km
- between I and I0 Mbps
- 3G, 4G: LTE

Physical media

- Twisted pair (꼬임 쌍선)
 - \checkmark two insulated copper wires
 - > Category 5: 100 Mbps, 1 Gbps Ethernet
 - ➤ Category 6: 10Gbps
- Coaxial cable (동축 케이블)
 - \checkmark two concentric copper conductors
 - \checkmark bidirectional
 - ✓ broadband:
 - ➤ multiple channels on cable
- Fiber optic cable (광 케이블)
 - ✓ glass fiber carrying light pulses, each pulse a bit
 - ✓ high-speed operation
 - ✓ Low error rate

Physical media – radio

▪ 전자기장을 이용한 신호 전달

(signal carried in electromagnetic spectrum)

- 유선을 쓰지 않음 (no physical "wire")
- 양방향 (bidirectional)
- 전파 환경 (propagation environment effects):
 - ✔ 반사 (reflection)
 - ✔ 장애 (obstruction by objects)
 - ✓ 간섭 (Interference)
- Radio link types:
 - ✓ Terrestrial Microwave
 - \checkmark LAN
 - ✓ Cellular
 - ✓ Satellite

Network Core

▪ 라우터로 구성된 망

(Mesh of interconnected routers)

Packet-switching

- ✓ 애플리케이션 계층 메시지를 패킷으로 분리
- ✓ 소스 노드에서 목적지 노드까지 라우터 를 경유하여 패킷 전송
- ✓ 각각의 패킷이 전체 링크 용량을 사용하 며 전송

Packet Switching

■ 데이터를 패킷으로 분리하여 전송

Packet Switching

 라우터를 경유하여 패킷 단위 전송

Packet Switching: store-and-forward

- L-비트 패킷을 R bps 링크로 전송하면 L/R 초의 지연 발생
- store and forward:
 ✓ 전체 패킷은 다음 링크로 전송되기 전에 라우터에 도착해야 한다
- 그림에서 종단간 전송지연 = 2 x L/R (전파 지연이 없다면)
 ✓ Example: L = 7.5 Mbits, R = 1.5 Mbps, e2e delay = ?

Packet Switching: queueing and loss

- 큐잉과 손실 (queuing and loss):
 - ✓ 만약, 일정 시간 동안 링크의 패킷 도착률이 패킷 전송률을 초과한다면,
 > 패킷은 큐잉되고 링크에서의 전송을 기다린다
 > 큐가 가득 찼다면 패킷은 드롭(drop)된다

Two key network-core functions

Network Layer Functions

Recall: two network-layer functions:

- forwarding: move packets from router's input to appropriate router output
 data plane
- routing: determine route taken by packets from source Control plane to destination

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

Per-Router Control Plane

 Individual routing algorithm components *in each and every router* interact with each other in control plane to compute forwarding tables

Logically Centralized Control Plane

 A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Circuit Switching

- end-end resources allocated to, reserved for "call" between source & dest:
- 예),각 링크는 4개의 서킷을 가짐
- 전용 링크 사용: no sharing ✓ 보장된 성능 발휘
- 사용하지 않는 경우 서킷은 비워진다 (no sharing)
- 일반적으로 전화망에서 사용

Packet Switching vs. Circuit Switching

패킷 스위칭 (Packet switching)

- bursty data를 위한 우수한 방안
 - 자원 공유 (resource sharing)
 - 단순, 셋업 과정이 없다 (simpler, no call setup)
- excessive congestion possible: packet delay and loss
 - 신뢰성 있는 데이터 전송과 혼잡 제어를 위한 프로토콜 필요
- *Q:* How to provide circuit-like behavior?
 - 멀티미디어 응용에서 요구되는 대역폭 보장 방안

Q: reserved resources (circuit switching) vs. on-demand allocation (packet switching)?

Internet structure: a network of networks

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - ✓ residential, company and university ISPs
- Access ISPs in turn must be interconnected
 - \checkmark so that, any two hosts can send packets to each other
- Resulting network of networks is very complex
 - ✓ evolution was driven by economics and national policies

Internet structure

Performance – loss and delay

- 라우터 버퍼에 패킷 저장 (queueing)
 - ✓ packet arrival rate to link (temporarily) exceeds output link capacity
 - ✓ packets queue, wait for turn

Packet Delay

Packet Loss

■ 큐는 유한한 크기를 가짐

✓ queue (aka buffer) preceding link in buffer has finite capacity

■ 큐가 가득차면 패킷 손실 발생

✓ packet arriving to full queue dropped (aka lost)

■ 손실된 패킷은 재전송

✓lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

■ 처리율 (throughput): rate (bits/time unit) at which bits transferred between sender/receiver

✔instantaneous (즉각적인): 특정 시점에 대한 전송률

✔average (평균): 구간에 대한 전송률

Throughput: Internet scenario

 per-connection endend throughput: min(R_c, R_s, R/10)

backbone bottleneck link *R* bits/sec

Protocol Layers

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Why layering?

dealing with complex systems:

- 복잡한 시스템 단위에 대한 관계에 대한 명확한 구조 ✓ layered *reference model* for discussion
- - 조화(modulation): 시스템의 유지보수 및 업데이트 용이

 ✓레이어 구현의 변화가 기존 시스템에 영향을 주지 않는다
 ✓e.g., change in gate procedure doesn't affect rest of system
- Iayering considered harmful?

OSI

- 개방형시스템상호연결 : Open System Interconnection
- OSI 모델의 목적
 - ✓ 모든 종류의 컴퓨터 시스템 간 통신을 허용하는 네트워크 시스템 설계를 위한 계층 구조
 ✓ 하드웨어나 소프트웨어의 변경없이 서로 다른 시스템 간 통신이
 - 가능하도록 함
 - ✓ To open communication between different systems without requiring changes to the logic of the underlying hardware and software
- OSI 모델
 - ✔ 네트워크 시스템 설계를 위해 계층 구조의 프레임워크를 사용한다
 - ✓ Layered framework for the design of network systems that allows for communication across all types of computer systems

OSI 7 Layers

- 응용 계층 ✓ 정보 서비스 제공
- 표현 계층
 ✓ 부호화, 암호화, 압축
- 세션 계층
 ✓ 데이터 메시지의 동기화
- 전송 계층 ✓ 전체 메시지의 종단 대 종단 전달
- 비트워크 계층
 ✓ 링크를 통해 목적지까지 패킷 전달
- 데이터 링크 계층 ✓ 노드 대 노드 전달
- 물리 계층
 ✓ 비트 흐름을 전송하기 위한 기능

Application

Provides access to the OSI environment for users and al provides distributed information services.

Presentation

Provides independence to the application processes from differences in data representation (syntax).

Session

Provides the control structure for communication between applications; establishes, manages, and terminates connections (sessions) between cooperating applications

Transport

Provides reliable, transparent transfer of data between end points; provides end-to-end error recovery and flow control

Network

Provides upper layers with independence from the data transmission and switching technologies used to connec systems; responsible for establishing, maintaining, and terminating connections.

Data Link

Provides for the reliable transfer of information across the physical link; sends blocks (frames) with the necessary synchronization, error control, and flow control.

Physical

Concerned with transmission of unstructured bit stream over physical medium; deals with the mechanical, electrical, functional, and procedural characteristics to access the physical medium.

OSI 7 Layers

OSI 7 Layers – OSI as Framework

OSI 7 Layers

OSI Reference Model

- 계층 구조 (Organization of the Layers)
 - ✓ 1, 2, 3 계층 (네트워크 지원 계층)
 - ▶ 디바이스와 디바이스간 데이터의 물리적 이동을 다룬다
 - > Deal with the physical aspects of moving data from one device to another

✔ 4 계층 (전송 지원 계층)

- ▶ 하위 그룹을 연결하고 하위 계층에서 전송 한 내용이 상위 계층에서 사용할 수 있는 형식 인지 확인한다
- Links the two subgroups and ensures that what the lower layers have transmitted is in a form that the upper layers can use

✓ 5, 6, 7 계층 (사용자 지원 계층)

- ▶ 서로 다른 시스템에서 상호간 데이터 통신을 허용한다
- > Allow interoperability among unrelated software systems

Internet Protocol Stack

- TCP/IP 프로토콜
 - ✔ OSI 모델보다 먼저 개발
 - ✔ 물리층, 데이터 링크층, 네트워크층, 전송층, 응용층 으로 구성

Addressing in TCP/IP System

Relationship of layers and address in TCP/IP

