
INTELLIGENT NETWORKING & SYSTEM LAB.

Inter-Process Communication

INTELLIGENT NETWORKING & SYSTEM LAB. 1

Inter-Process Communication

 Mechanisms for processes to communicate with each other

 UNIX IPC
 pipes
 FIFOs
 message queue
 shared memory
 sockets

INTELLIGENT NETWORKING & SYSTEM LAB. 2

Pipes

 The oldest form of UNIX IPC
Half-duplex
Between processes that have a common ancestor

 Pipe

 Half-duplex pipe after a fork

 IPC through pipes
Once we have created a pipe using pipe
We can use the normal file I/O functions (e.g., read, write)

#include <unistd.h>
int pipe(int fd[2]);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 3

Exercise

 Send data from parent to child over a pipe

 Synchronization between parent and child using pipe

$gcc –o pipe pipe.c (or make pipe)
$./pipe

$gcc –o sync sync.c synchlib.c (or make sync)
$./sync

INTELLIGENT NETWORKING & SYSTEM LAB. 4

FiFOs

 Named pipes
Full-duplex
Between unrelated processes that don’t have a common ancestor

 Create a FIFO

 IPC through FIFOs
Once we have created a FIFO using mkfifo,
We can use the normal file I/O functions (e.g., open, read, write, close)

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(char *pathname, mode_t mode);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 5

FIFOs

 Client-server communication using FIFOs

INTELLIGENT NETWORKING & SYSTEM LAB. 6

Exercise

 Client-server communication using FIFOs

$gcc –o fifos fifos.c (or make fifos)
$gcc –o fifoc fifoc.c (or make fifoc)
$./fifos

$./fifoc

INTELLIGENT NETWORKING & SYSTEM LAB. 7

Message Queues

 A linked list of messages stored within the kernel

 A message consists of
A long integer that have the positive integer message type
Message data

 IPC through message queues
 msgget : Open an existing queue or create a new one
 msgsnd : Place a message onto the queue
 msgrcv : Fetch a message from the queue

struct mymsg {
long mtype; /* positive message type

*/
char mtext[512]; /* message data */

};

INTELLIGENT NETWORKING & SYSTEM LAB. 8

System Calls for Message Queues

 Obtain a message queue ID

 Message queue control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int flag);
return: message queue ID if OK, -1 on error

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 9

System Calls for Message Queues

 Message queue control operations
The second argument, cmd

IPC_STAT : fetch the msqid_ds structure for this queue
IPC_SET : set the part of msqid_ds structure
IPC_RMID : remove the message queue from the system

The third argument, buf
struct msqid_ds {

struct ipc_perm msg_perm; //IPC structure: permission and owner
struct msg *msg_first; //ptr to first message on queue
struct msg *msg_last; //ptr to last message on queue
ulong msg_cbytes; //current # of bytes on queue
ulong msg_qnum; //# of messages on queue
ulong msg_qbytes; //max. # of bytes on queue
pid_t msg_lspid; //pid of last msgsnd()
pid_t msg_lrpid; //pid of last msgrcv()
time_t msg_stime; //last-msgsnd() time
time_t msg_rtime; //last-msgrcv() time
time_t msg_ctime; //last-change time

};

INTELLIGENT NETWORKING & SYSTEM LAB. 10

System Calls for Message Queues

 Send a message

 Receive a message

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, void *ptr, size_t nbytes, int flag);
return: 0 if OK, -1 on error
the fourth argument, flag: IPC_NOWAIT

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv(int msqid, void *ptr, size_t nbytes, long type, int
flag);
return: size of data portion of message if OK, -1 on error
the fifth argument, flag: IPC_NOWAIT

INTELLIGENT NETWORKING & SYSTEM LAB. 11

System Calls for Message Queues

 Receive a message
 If type == 0,

The first message on the queue is returned
 If type > 0,

The first message on the queue whose message type equals type is returned
 If type < 0,

The first message on the queue whose message type is the lowest value less
than or equal to the absolute value of type is returned

 If IPC_NOWAIT is specified in flag,
Return is made with an error of EAGAIN

INTELLIGENT NETWORKING & SYSTEM LAB. 12

Exercise

 IPC between two processes using message queue

 Note:
 If a process creates a message queue, its data structure remains in the kernel even

though the process has terminated
You have to remove it through msgctl() with IPC_RMID parameter (or, reboot the

system !!)

$gcc –o msgq1 msgq1.c (or make msgq1)
$gcc –o msgq2 msgq2.c (or make msgq2)
$./msgq1

$./msgq2

INTELLIGENT NETWORKING & SYSTEM LAB. 13

Shared Memory

 Allows two or more processes to share a given region of memory
The fastest form of IPC because data does not need to be copied between them
Need to synchronize shared memory access

Semaphores are used often

 IPC through shared memory
shmget

Obtain a shared memory identifier
Open an existing segment or create a new one

shmat
Attach a shared memory segment to the process’ address space

shmdt
Detach a shared memory segment
shmdt does not remove the identifier and its associated data structure from the

system

INTELLIGENT NETWORKING & SYSTEM LAB. 14

System Calls for Shared Memory

 Obtain a shared memory ID

The second argument, size
 If a new segment is being created, we must specify its minimum size, size
 If we are referencing an existing segment, we can specify size as 0

 Shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key, int size, int flag);
return: shared memory ID if OK, -1 on error

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 15

System Calls for Shared Memory

 Shared memory control operations
The second argument, cmd

The third argument, buf

IPC_STAT :fetch the shmid_ds structure for this shared memory
IPC_SET :set the part of shmid_ds structure
IPC_RMID :remove the shared memory segment from the system
SHM_LOCK :lock the shared memory in memory
SHM_UNLOCK :unlock the shared memory segment

struct shmid_ds {
struct ipc_perm shm_perm; //IPC structure: permission and owner
struct anon_map *shm_amp; //pointer in kernel
int shm_segsz; //size of segment in bytes
ushort shm_lkcnt; //# of times segment is being locked
pid_t shm_lpid; //pid of last shmop()
pid_t shm_cpid; //pid of creator
ulong shm_nattch; //# of current attaches
ulong shm_cnattch; //used only for shminfo
time_t shm_atime; //last-attach time
time_t shm_dtime; //last-detach time
time_t shm_ctime; //last-chang time

};

INTELLIGENT NETWORKING & SYSTEM LAB. 16

System Calls for Shared Memory

 Attach a shared memory segment

The fourth argument, flag
SHM_RND, SHM_RDONLY

 If addr == 0, (Recommended)
The segment is attached at the first available address selected by the kernel

 If add != 0 and SHM_RND is not specified,
The segment is attached at the address given by addr

 If addr != 0 and SHM_RND is specified,
The segment is attached at the address given by (addr-(addr modulus SHMLBA))

 If SHM_RDONLY is specified,
The segment is attached read-only

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int *shmat(int shmid, void *addr, int flag);
return: pointer to shared memory segment if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 17

System Calls for Shared Memory

 Detach a shared memory segment
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmdt(void *addr);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 18

Exercise

 Shared memory example (&memory map)

 IPC between two processes using shared memory

 Note:
 If a process creates a shared memory, its data structure remains in the kernel even

though the process has terminated
You have to remove it through shmctl() with IPC_RMID parameter (or, reboot the

system !!)

$gcc –o shm shm.c (or make shm)
$./shm

$gcc –o sipc1 sipc1.c (or make sipc1)
$gcc –o sipc2 sipc2.c (or make sipc2)
$./sipc1

$./sipc2

INTELLIGENT NETWORKING & SYSTEM LAB.

Synchronization

INTELLIGENT NETWORKING & SYSTEM LAB. 20

Synchronization

 Thread cooperate in multithreaded programs
To share resources, access shared data structures
Also, to coordinate their execution

 For correctness, we have to control this cooperation
Must assume threads interleave executions arbitrarily and at different rates
We control cooperation using synchronization

Enables us to restrict the interleaving of execution
 (Note) This also applies to processes, not just threads

And it also applies across machines in a distributed system

INTELLIGENT NETWORKING & SYSTEM LAB. 21

An Example

 Withdraw money from a back account
Suppose you and your friend share a back account with a balance of 1,000,000 won
What happens if both go to separate ATM machines, and simultaneously withdraw

100,000 won from the account?

INTELLIGENT NETWORKING & SYSTEM LAB. 22

An Example

 Interleaved schedules
Represent the situation by creating a separate thread for each person to do the

withdrawals
The execution of the two threads can be interleaved, assuming preemptive

scheduling:

INTELLIGENT NETWORKING & SYSTEM LAB. 23

Synchronization Problem

 Two concurrent threads (or processes) access a shared resource without
any synchronization

 Creates a race condition
The situation where several processes access and manipulate shared data

concurrently
The result is non-deterministic and depends on timing

 Critical section
Code segment in which the shared data is accessed

 We need mechanisms for controlling access to critical sections in the
face of concurrency
So that we can reason about the operation programs

 Synchronization is necessary for any shared data structure
Buffers, queues, lists, etc.

INTELLIGENT NETWORKING & SYSTEM LAB. 24

Another Example: Bounded Buffer

 No synchronization

INTELLIGENT NETWORKING & SYSTEM LAB. 25

Exercise

 Producer & Consumer sharing bounded buffer

 Synchronization problem
The statement “count++” may be implemented in machine language as:

The statement “count—” may be implemented as:

$ gcc –o producer producer.c (or make producer)
$ gcc –o consumer consumer.c (or make consumer)
$./producer
$./consumer

register1 = counter
register1 = register1 + 1
counter = register1

register2 = counter
register2 = register2 + 1
counter = register2

INTELLIGENT NETWORKING & SYSTEM LAB. 26

Exercise

 Synchronization problem (cont’d)
Assume counter is initially 5. One interleaving of statements is:

The value of counter may be either 4 or 6, where the correct result should be 5

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

INTELLIGENT NETWORKING & SYSTEM LAB. 27

Synchronization Mechanisms

 Semaphores
Basic, easy to get the hang of, hard to program with
Binary semaphore = mutex (lock)
Counting semaphore

 Monitors
High-level, requires language support, implicit operations
Each to program with: Java “synchronized”

 Mutex + Condition variables
Pthreads

INTELLIGENT NETWORKING & SYSTEM LAB. 28

Semaphores

 Semaphore
A counter used to provide access to a shared data object for multiple processes or

threads
Two operations

Wait or P
Signal or V

 Synchronization procedure using semaphores
Test the semaphore that controls the resource
 If the value of the semaphore is positive, the process can use the resource

The process decrements the semaphore value by 1, indicating that is has used
on unit of the resource

 If the value of the semaphore is 0, the process goes to sleep until the semaphore
value is greater than 0
When the process wakes up, it returns to above step

INTELLIGENT NETWORKING & SYSTEM LAB. 29

Semaphore Implementations

 System V semaphore
Named semaphore  between processes
Shared key (number) between processes
Serviced by kernel

 POSIX semaphore
Unnamed semaphore  between threads or related processes
Shared variable in sem_t type between threads or related processes
Serviced by libraries or kernel
Most implementation doesn’t support synchronization between processes yet,

including Solaris and Linux

INTELLIGENT NETWORKING & SYSTEM LAB. 30

System calls for System V Semaphores

 Obtain a semaphore set ID

 Semaphore control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);
return: semaphore ID if OK, -1 on error

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, union semun arg);
return: non-negative value depending on cmd if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 31

System calls for System V Semaphores

 Semaphore control operations
The third argument, cmd

The fourth argument, arg

IPC_STAT: fetch the semid_ds structure for this semaphore set
IPC_SET : set the part of semid_ds structure
IPC_RMID: remove the semaphore set from the system
GETVAL : return the semaphore value
SETVAL : set the semaphore value
GETPID : get pid of the process which do the last access to the semaphore
GETNCNT : return the number of processes which wait for the semaphore to increase
GETZCNT : return the number of processes which wait for the semaphore to be zero
GETALL : fetch all the semaphore values in the set
SETALL : set all the semaphore values in the set

union semun {
int val; /* for SETVAL */
struct semid_ds *buf; /* for IPC_STAT and IPC_SET */
ushort *array; /* for GETALL and SETALL */

};

INTELLIGENT NETWORKING & SYSTEM LAB. 32

System calls for System V Semaphores

 Semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semop(int semid, struct sembuf semop[], size_t nops);
return: 0 if OK, -1 on error

The second argument, semop
struct sembuf {

ushort sem_num; // member # in set (0, 1, …, nsems-1)
short sem_op; // operation (negative, 0, or positive)
short sem_flg; // IPC_NOWAIT, SEM_UNDO

};

INTELLIGENT NETWORKING & SYSTEM LAB. 33

System calls for System V Semaphores

 Semaphore operations
 If sem_op > 0,

The value of sem_op is added to the semaphore’s value
 If sem_op < 0 and the semaphore’s value >= the value of sem_op,

The value of sem_op is added to the semaphore’s value
 If sem_op < 0 and the semaphore’s value < the value of sem_op,

 If IPC_NOWAIT is not specified, the calling process is suspended until the
semaphore’s value >= the absolute value of sem_op

 If IPC_NOWAIT is specified, return is made with an error of EAGAIN
 If sem_op == 0 and the semaphore’s value is not zero

 If IPC_NOWAIT is not specified, the calling process is suspended until the
semaphore’s value becomes zero

 If IPC_NOWAIT is specified, return is made with an error of EAGAIN

 Semaphore adjustment on exit
What happens if a process terminates while it has resources allocated through a

semaphore?
Use SEM_UNDO flags

INTELLIGENT NETWORKING & SYSTEM LAB. 34

POSIX Semaphores

 POSIX semaphore libraries

 Note: link option (dependent on semaphore packages)
Solaris

Linux

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem, int *sval);
int sem_destroy(sem_t *sem);
return: 0 if OK, non-zero value on error

-lposix4

-lpthread

INTELLIGENT NETWORKING & SYSTEM LAB. 35

Exercise

 Implementation of semaphores similar to POSIX semaphores using
System V semaphores & shared memory

 Producer & Consumer example using semlib library

 Note:
 If a process creates a system V semaphore, its data structure remains in the kernel

even though the process has terminated
You have to remove it through semctl() with IPC_RMID parameter

(or, reboot the system !!!)

$gcc semlib.c (or make semlib.o)

$gcc –o producer_s producer_s.c semlib.c (or make producer_s)
$gcc –o consumer_s consumer_s.c semlib.c (or make consumer_s)
$./producer_s
$./consumer_s

INTELLIGENT NETWORKING & SYSTEM LAB. 36

Exercise

 Bounded buffer implementation with semaphores

INTELLIGENT NETWORKING & SYSTEM LAB. 37

Exercise

 Producer & consumer example using pthreads & POSIX semaphores

$gcc –o prodcons prodcons.c –lposix4 –lpthread (or make prodcons)
$./prodcons

INTELLIGENT NETWORKING & SYSTEM LAB. 38

Mutexes

 Mutexes
Mutual exclusive locks for threads
Serviced by Pthread libraries
Similar to binary semaphore

 Pthread libraries for mutexes

#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *mattr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
return: 0 if OK, non-zero value on error

INTELLIGENT NETWORKING & SYSTEM LAB. 39

Condition Variables

 Condition variables
A synchronization device that allows threads to suspend and resume execution until

some predicate on shared data is satisfied
Serviced by Pthread libraries
Associated with a mutex, to avoid the race condition

 Pthread libraries for condition variables
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cattr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
return: 0 if OK, non-zero value on error

INTELLIGENT NETWORKING & SYSTEM LAB. 40

Exercise

 Producer & Consumer example using mutexes and condition variables

 Implementation of POSIX semaphores using mutexes and condition
variables

 Producer & Consumer example using semlib2 library

$gcc –o prodcons_m prodcons_m.c –lpthread (or make prodcons_m)
$./prodcons_m

$gcc semlib2.c (or make semlib2.o)

$gcc –o prodcons_s prodcons_s.c semlib2.c –lpthread (or make prodcons_s)
$./prodcons_s

INTELLIGENT NETWORKING & SYSTEM LAB.

E N D

