
INTELLIGENT NETWORKING & SYSTEM LAB.

Inter-Process Communication

INTELLIGENT NETWORKING & SYSTEM LAB. 1

Inter-Process Communication

 Mechanisms for processes to communicate with each other

 UNIX IPC
 pipes
 FIFOs
 message queue
 shared memory
 sockets

INTELLIGENT NETWORKING & SYSTEM LAB. 2

Pipes

 The oldest form of UNIX IPC
Half-duplex
Between processes that have a common ancestor

 Pipe

 Half-duplex pipe after a fork

 IPC through pipes
Once we have created a pipe using pipe
We can use the normal file I/O functions (e.g., read, write)

#include <unistd.h>
int pipe(int fd[2]);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 3

Exercise

 Send data from parent to child over a pipe

 Synchronization between parent and child using pipe

$gcc –o pipe pipe.c (or make pipe)
$./pipe

$gcc –o sync sync.c synchlib.c (or make sync)
$./sync

INTELLIGENT NETWORKING & SYSTEM LAB. 4

FiFOs

 Named pipes
Full-duplex
Between unrelated processes that don’t have a common ancestor

 Create a FIFO

 IPC through FIFOs
Once we have created a FIFO using mkfifo,
We can use the normal file I/O functions (e.g., open, read, write, close)

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(char *pathname, mode_t mode);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 5

FIFOs

 Client-server communication using FIFOs

INTELLIGENT NETWORKING & SYSTEM LAB. 6

Exercise

 Client-server communication using FIFOs

$gcc –o fifos fifos.c (or make fifos)
$gcc –o fifoc fifoc.c (or make fifoc)
$./fifos

$./fifoc

INTELLIGENT NETWORKING & SYSTEM LAB. 7

Message Queues

 A linked list of messages stored within the kernel

 A message consists of
A long integer that have the positive integer message type
Message data

 IPC through message queues
 msgget : Open an existing queue or create a new one
 msgsnd : Place a message onto the queue
 msgrcv : Fetch a message from the queue

struct mymsg {
long mtype; /* positive message type

*/
char mtext[512]; /* message data */

};

INTELLIGENT NETWORKING & SYSTEM LAB. 8

System Calls for Message Queues

 Obtain a message queue ID

 Message queue control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int flag);
return: message queue ID if OK, -1 on error

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 9

System Calls for Message Queues

 Message queue control operations
The second argument, cmd

IPC_STAT : fetch the msqid_ds structure for this queue
IPC_SET : set the part of msqid_ds structure
IPC_RMID : remove the message queue from the system

The third argument, buf
struct msqid_ds {

struct ipc_perm msg_perm; //IPC structure: permission and owner
struct msg *msg_first; //ptr to first message on queue
struct msg *msg_last; //ptr to last message on queue
ulong msg_cbytes; //current # of bytes on queue
ulong msg_qnum; //# of messages on queue
ulong msg_qbytes; //max. # of bytes on queue
pid_t msg_lspid; //pid of last msgsnd()
pid_t msg_lrpid; //pid of last msgrcv()
time_t msg_stime; //last-msgsnd() time
time_t msg_rtime; //last-msgrcv() time
time_t msg_ctime; //last-change time

};

INTELLIGENT NETWORKING & SYSTEM LAB. 10

System Calls for Message Queues

 Send a message

 Receive a message

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, void *ptr, size_t nbytes, int flag);
return: 0 if OK, -1 on error
the fourth argument, flag: IPC_NOWAIT

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv(int msqid, void *ptr, size_t nbytes, long type, int
flag);
return: size of data portion of message if OK, -1 on error
the fifth argument, flag: IPC_NOWAIT

INTELLIGENT NETWORKING & SYSTEM LAB. 11

System Calls for Message Queues

 Receive a message
 If type == 0,

The first message on the queue is returned
 If type > 0,

The first message on the queue whose message type equals type is returned
 If type < 0,

The first message on the queue whose message type is the lowest value less
than or equal to the absolute value of type is returned

 If IPC_NOWAIT is specified in flag,
Return is made with an error of EAGAIN

INTELLIGENT NETWORKING & SYSTEM LAB. 12

Exercise

 IPC between two processes using message queue

 Note:
 If a process creates a message queue, its data structure remains in the kernel even

though the process has terminated
You have to remove it through msgctl() with IPC_RMID parameter (or, reboot the

system !!)

$gcc –o msgq1 msgq1.c (or make msgq1)
$gcc –o msgq2 msgq2.c (or make msgq2)
$./msgq1

$./msgq2

INTELLIGENT NETWORKING & SYSTEM LAB. 13

Shared Memory

 Allows two or more processes to share a given region of memory
The fastest form of IPC because data does not need to be copied between them
Need to synchronize shared memory access

Semaphores are used often

 IPC through shared memory
shmget

Obtain a shared memory identifier
Open an existing segment or create a new one

shmat
Attach a shared memory segment to the process’ address space

shmdt
Detach a shared memory segment
shmdt does not remove the identifier and its associated data structure from the

system

INTELLIGENT NETWORKING & SYSTEM LAB. 14

System Calls for Shared Memory

 Obtain a shared memory ID

The second argument, size
 If a new segment is being created, we must specify its minimum size, size
 If we are referencing an existing segment, we can specify size as 0

 Shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key, int size, int flag);
return: shared memory ID if OK, -1 on error

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 15

System Calls for Shared Memory

 Shared memory control operations
The second argument, cmd

The third argument, buf

IPC_STAT :fetch the shmid_ds structure for this shared memory
IPC_SET :set the part of shmid_ds structure
IPC_RMID :remove the shared memory segment from the system
SHM_LOCK :lock the shared memory in memory
SHM_UNLOCK :unlock the shared memory segment

struct shmid_ds {
struct ipc_perm shm_perm; //IPC structure: permission and owner
struct anon_map *shm_amp; //pointer in kernel
int shm_segsz; //size of segment in bytes
ushort shm_lkcnt; //# of times segment is being locked
pid_t shm_lpid; //pid of last shmop()
pid_t shm_cpid; //pid of creator
ulong shm_nattch; //# of current attaches
ulong shm_cnattch; //used only for shminfo
time_t shm_atime; //last-attach time
time_t shm_dtime; //last-detach time
time_t shm_ctime; //last-chang time

};

INTELLIGENT NETWORKING & SYSTEM LAB. 16

System Calls for Shared Memory

 Attach a shared memory segment

The fourth argument, flag
SHM_RND, SHM_RDONLY

 If addr == 0, (Recommended)
The segment is attached at the first available address selected by the kernel

 If add != 0 and SHM_RND is not specified,
The segment is attached at the address given by addr

 If addr != 0 and SHM_RND is specified,
The segment is attached at the address given by (addr-(addr modulus SHMLBA))

 If SHM_RDONLY is specified,
The segment is attached read-only

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int *shmat(int shmid, void *addr, int flag);
return: pointer to shared memory segment if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 17

System Calls for Shared Memory

 Detach a shared memory segment
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmdt(void *addr);
return: 0 if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 18

Exercise

 Shared memory example (&memory map)

 IPC between two processes using shared memory

 Note:
 If a process creates a shared memory, its data structure remains in the kernel even

though the process has terminated
You have to remove it through shmctl() with IPC_RMID parameter (or, reboot the

system !!)

$gcc –o shm shm.c (or make shm)
$./shm

$gcc –o sipc1 sipc1.c (or make sipc1)
$gcc –o sipc2 sipc2.c (or make sipc2)
$./sipc1

$./sipc2

INTELLIGENT NETWORKING & SYSTEM LAB.

Synchronization

INTELLIGENT NETWORKING & SYSTEM LAB. 20

Synchronization

 Thread cooperate in multithreaded programs
To share resources, access shared data structures
Also, to coordinate their execution

 For correctness, we have to control this cooperation
Must assume threads interleave executions arbitrarily and at different rates
We control cooperation using synchronization

Enables us to restrict the interleaving of execution
 (Note) This also applies to processes, not just threads

And it also applies across machines in a distributed system

INTELLIGENT NETWORKING & SYSTEM LAB. 21

An Example

 Withdraw money from a back account
Suppose you and your friend share a back account with a balance of 1,000,000 won
What happens if both go to separate ATM machines, and simultaneously withdraw

100,000 won from the account?

INTELLIGENT NETWORKING & SYSTEM LAB. 22

An Example

 Interleaved schedules
Represent the situation by creating a separate thread for each person to do the

withdrawals
The execution of the two threads can be interleaved, assuming preemptive

scheduling:

INTELLIGENT NETWORKING & SYSTEM LAB. 23

Synchronization Problem

 Two concurrent threads (or processes) access a shared resource without
any synchronization

 Creates a race condition
The situation where several processes access and manipulate shared data

concurrently
The result is non-deterministic and depends on timing

 Critical section
Code segment in which the shared data is accessed

 We need mechanisms for controlling access to critical sections in the
face of concurrency
So that we can reason about the operation programs

 Synchronization is necessary for any shared data structure
Buffers, queues, lists, etc.

INTELLIGENT NETWORKING & SYSTEM LAB. 24

Another Example: Bounded Buffer

 No synchronization

INTELLIGENT NETWORKING & SYSTEM LAB. 25

Exercise

 Producer & Consumer sharing bounded buffer

 Synchronization problem
The statement “count++” may be implemented in machine language as:

The statement “count—” may be implemented as:

$ gcc –o producer producer.c (or make producer)
$ gcc –o consumer consumer.c (or make consumer)
$./producer
$./consumer

register1 = counter
register1 = register1 + 1
counter = register1

register2 = counter
register2 = register2 + 1
counter = register2

INTELLIGENT NETWORKING & SYSTEM LAB. 26

Exercise

 Synchronization problem (cont’d)
Assume counter is initially 5. One interleaving of statements is:

The value of counter may be either 4 or 6, where the correct result should be 5

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

INTELLIGENT NETWORKING & SYSTEM LAB. 27

Synchronization Mechanisms

 Semaphores
Basic, easy to get the hang of, hard to program with
Binary semaphore = mutex (lock)
Counting semaphore

 Monitors
High-level, requires language support, implicit operations
Each to program with: Java “synchronized”

 Mutex + Condition variables
Pthreads

INTELLIGENT NETWORKING & SYSTEM LAB. 28

Semaphores

 Semaphore
A counter used to provide access to a shared data object for multiple processes or

threads
Two operations

Wait or P
Signal or V

 Synchronization procedure using semaphores
Test the semaphore that controls the resource
 If the value of the semaphore is positive, the process can use the resource

The process decrements the semaphore value by 1, indicating that is has used
on unit of the resource

 If the value of the semaphore is 0, the process goes to sleep until the semaphore
value is greater than 0
When the process wakes up, it returns to above step

INTELLIGENT NETWORKING & SYSTEM LAB. 29

Semaphore Implementations

 System V semaphore
Named semaphore between processes
Shared key (number) between processes
Serviced by kernel

 POSIX semaphore
Unnamed semaphore between threads or related processes
Shared variable in sem_t type between threads or related processes
Serviced by libraries or kernel
Most implementation doesn’t support synchronization between processes yet,

including Solaris and Linux

INTELLIGENT NETWORKING & SYSTEM LAB. 30

System calls for System V Semaphores

 Obtain a semaphore set ID

 Semaphore control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);
return: semaphore ID if OK, -1 on error

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, union semun arg);
return: non-negative value depending on cmd if OK, -1 on error

INTELLIGENT NETWORKING & SYSTEM LAB. 31

System calls for System V Semaphores

 Semaphore control operations
The third argument, cmd

The fourth argument, arg

IPC_STAT: fetch the semid_ds structure for this semaphore set
IPC_SET : set the part of semid_ds structure
IPC_RMID: remove the semaphore set from the system
GETVAL : return the semaphore value
SETVAL : set the semaphore value
GETPID : get pid of the process which do the last access to the semaphore
GETNCNT : return the number of processes which wait for the semaphore to increase
GETZCNT : return the number of processes which wait for the semaphore to be zero
GETALL : fetch all the semaphore values in the set
SETALL : set all the semaphore values in the set

union semun {
int val; /* for SETVAL */
struct semid_ds *buf; /* for IPC_STAT and IPC_SET */
ushort *array; /* for GETALL and SETALL */

};

INTELLIGENT NETWORKING & SYSTEM LAB. 32

System calls for System V Semaphores

 Semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semop(int semid, struct sembuf semop[], size_t nops);
return: 0 if OK, -1 on error

The second argument, semop
struct sembuf {

ushort sem_num; // member # in set (0, 1, …, nsems-1)
short sem_op; // operation (negative, 0, or positive)
short sem_flg; // IPC_NOWAIT, SEM_UNDO

};

INTELLIGENT NETWORKING & SYSTEM LAB. 33

System calls for System V Semaphores

 Semaphore operations
 If sem_op > 0,

The value of sem_op is added to the semaphore’s value
 If sem_op < 0 and the semaphore’s value >= the value of sem_op,

The value of sem_op is added to the semaphore’s value
 If sem_op < 0 and the semaphore’s value < the value of sem_op,

 If IPC_NOWAIT is not specified, the calling process is suspended until the
semaphore’s value >= the absolute value of sem_op

 If IPC_NOWAIT is specified, return is made with an error of EAGAIN
 If sem_op == 0 and the semaphore’s value is not zero

 If IPC_NOWAIT is not specified, the calling process is suspended until the
semaphore’s value becomes zero

 If IPC_NOWAIT is specified, return is made with an error of EAGAIN

 Semaphore adjustment on exit
What happens if a process terminates while it has resources allocated through a

semaphore?
Use SEM_UNDO flags

INTELLIGENT NETWORKING & SYSTEM LAB. 34

POSIX Semaphores

 POSIX semaphore libraries

 Note: link option (dependent on semaphore packages)
Solaris

Linux

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem, int *sval);
int sem_destroy(sem_t *sem);
return: 0 if OK, non-zero value on error

-lposix4

-lpthread

INTELLIGENT NETWORKING & SYSTEM LAB. 35

Exercise

 Implementation of semaphores similar to POSIX semaphores using
System V semaphores & shared memory

 Producer & Consumer example using semlib library

 Note:
 If a process creates a system V semaphore, its data structure remains in the kernel

even though the process has terminated
You have to remove it through semctl() with IPC_RMID parameter

(or, reboot the system !!!)

$gcc semlib.c (or make semlib.o)

$gcc –o producer_s producer_s.c semlib.c (or make producer_s)
$gcc –o consumer_s consumer_s.c semlib.c (or make consumer_s)
$./producer_s
$./consumer_s

INTELLIGENT NETWORKING & SYSTEM LAB. 36

Exercise

 Bounded buffer implementation with semaphores

INTELLIGENT NETWORKING & SYSTEM LAB. 37

Exercise

 Producer & consumer example using pthreads & POSIX semaphores

$gcc –o prodcons prodcons.c –lposix4 –lpthread (or make prodcons)
$./prodcons

INTELLIGENT NETWORKING & SYSTEM LAB. 38

Mutexes

 Mutexes
Mutual exclusive locks for threads
Serviced by Pthread libraries
Similar to binary semaphore

 Pthread libraries for mutexes

#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *mattr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
return: 0 if OK, non-zero value on error

INTELLIGENT NETWORKING & SYSTEM LAB. 39

Condition Variables

 Condition variables
A synchronization device that allows threads to suspend and resume execution until

some predicate on shared data is satisfied
Serviced by Pthread libraries
Associated with a mutex, to avoid the race condition

 Pthread libraries for condition variables
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cattr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
return: 0 if OK, non-zero value on error

INTELLIGENT NETWORKING & SYSTEM LAB. 40

Exercise

 Producer & Consumer example using mutexes and condition variables

 Implementation of POSIX semaphores using mutexes and condition
variables

 Producer & Consumer example using semlib2 library

$gcc –o prodcons_m prodcons_m.c –lpthread (or make prodcons_m)
$./prodcons_m

$gcc semlib2.c (or make semlib2.o)

$gcc –o prodcons_s prodcons_s.c semlib2.c –lpthread (or make prodcons_s)
$./prodcons_s

INTELLIGENT NETWORKING & SYSTEM LAB.

E N D

