딥러닝 논문 리뷰 발표

트랜스포머 아키텍처를 최소화하기 (Reducing the Transformer Architecture to a Minimum)

소프트웨어융합학과 박사과정 김동욱

목차

- 1. 서론
- 2. 배경 및 관련 연구
- 3. 트랜스포머 아키텍쳐 및 제안
- 4. 실험 방법
- 5. 결론
- 6. 수식 설명

1. 서론-초록

- 트랜스포머 : 자연어 처리(NLP)와 컴퓨터 비전(CV)에서 널리 사용되고 성공적인 모델 아키텍처
- 어텐션 메커니즘 : NLP에서 긴 시퀀스의 관련 맥락 정보를 추출하는 문제와 CV 에서 현실적인 장면에서 관련 정보를 추출하는 문제를 해결
- 다층 퍼셉트론(MLP) : 일반적으로 전체 모델에서 가장 많은 학습 가능한 파라미 터를 포함하며, 쿼리 및 키 행렬을 동일한 크기의 단일 행렬로 축소할 수 있다.
- 이 논문은 MNIST, CIFAR-10 및 제한된 조건에서 ImageNet과 같은 널리 사용되는 CV 벤치마크를 테스트하여 기초 작업을 수행하였다.
- 실험 결과, 단순화된 트랜스포머 아키텍처는 MLP 없이, 행렬 축소, 대칭 유사성 행렬을 사용한 경우 원래 아키텍처와 유사한 성능을 보이며, 분류 성능을 저하시 키지 않고 최대 90%까지 파라미터를 절약할 수 있음을 보여주었다.
 - * MNIST (Modified National Institute of Standards and Technology)
 - MNIST는 손글씨 숫자(0~9)의 그레이스케일 이미지로 이루어진 데이터셋입니다. 이 데이터셋은 머신 러닝 모델의 성능을 평가하는 데 널리 사용
- * CIFAR-10 (Canadian Institute for Advanced Research)
 - CIFAR-10은 10개의 서로 다른 객체 클래스를 포함하는 컬러 이미지 데이터셋

1. 서론

- 1) 대형 언어 모델(LLM)은 주어진 질문에 대해 복잡한 텍스트 답변을 생성하는 데 뛰어난 성능을 보였다.
- 2) 모델들의 뛰어난 특징은 파라미터 세트의 엄청난 크기(수십억 개에 달함)이다.
- 3) 탁월한 성과를 거둔 컴퓨팅 모델은 트랜스포머 아키텍처(Vaswani et al., 2017)를 기반이며, 트랜스포머의 성공은 문맥 정보를 포착하는 뛰어난 능력 덕분이다.
- 4) 계산적인 관점에서 트랜스포머는 다음으로 구성된 구조이다.
 - · 토큰 문맥을 고려하는 알고리즘인 어텐션 메커니즘
 - · 중간 데이터를 비선형적으로 변환하는 다층 퍼셉트론(MLP).

1. 서론

- 어텐션 메커니즘만으로도 충분히 복잡한 패턴을 학습할 수 있다면,
 MLP를 제거하여 파라미터 수와 계산 비용을 획기적으로 줄일 수 있다는 주장이 가능하다.
 - · 모델 해석 가능성(interpretability) 증가
 - 오버피팅 방지
 - · 모바일 및 임베디드 환경에서의 활용성 증가 등의 부가적인 장점을 가져올 수 있다.
- 이 논문은 이와 같은 트랜스포머 아키텍처의 구조적 단순화가 실제로도 가능한 지를 이론적 분석과 실험적 검증을 통해 입증하고자 하고 있다.
 - * 오버 피팅: 머신러닝에서 모델이 훈련 데이터에 너무 과하게 맞춰져서, 훈련 데이터에서는 높은 성능을 보이지만 새로운 데이터(검증 데이터 또는 테스트 데이터)에 대해서는 성능이 떨어지는 현상

2. 배경 및 관련 연구 (Background and Related Work)

◆ 트랜스포머 경량화 시도들

기존 연구 중 일부는 트랜스포머 구조의 특정 요소를 제거하거나 축소하여 경량화 된 모델을 제안했습니다.

예를 들어:

- TinyBERT, MobileBERT와 같은 모델은 BERT 기반 구조를 경량화 하여 모바일 환경에서도 실행 가능하게 만들었습니다.
- · DistilBERT는 원래의 BERT 모델보다 더 적은 층(layer)을 사용하면서도, 비슷한 성능을 유지합니다.
- 이러한 모델들은 지식 증류(knowledge distillation)를 이용하여 성능을 유지한 채 모델 크기를 줄이는데 초점을 맞췄습니다.

2. 배경 및 관련 연구 (Background and Related Work)

- ◆ MLP 제거 및 어텐션 단순화 관련 연구 일부 연구는 트랜스포머 내의 MLP(Feed-forward network)를 제거하거나, 어텐션 연산 자체를 단순화하는 방향으로 접근했습니다.
- · 예를 들어, Performer, Linformer, Reformer와 같은 모델은 어텐션의 시간 복잡도를 낮추는 데 초점을 맞췄습니다.
- → 이들은 어텐션의 핵심적인 계산 비용을 줄이기 위해 근사(attention approximation)를 사용했습니다.
- 대부분의 연구는 어텐션 효율화에만 집중했을 뿐, "트랜스포머 블록에서 MLP 자체가 필요하지 않은가?"에 대한 근본적인 질문은 거의 다루지 않았습니다.

2. 배경 및 관련 연구 (Background and Related Work)

◆ 본 논문의 차별점

본 논문은 기존 연구들과 다음과 같은 점에서 구별됩니다:

- 1. MLP가 아예 필요하지 않은가에 대한 실험적 탐색
 - → 파라미터 수와 계산 비용을 줄이면서도 성능이 유지되는지를 직접 검증함
- 2. Q, K, V 행렬의 통합 및 대칭화
 - → 어텐션 내부 구조를 간소화하여 구조 자체를 근본적으로 단순화함
- 3. 단순한 선형 연산으로 충분한 성능 유지 가능성 실험
 - → 복잡한 트랜스포머 계층 없이도 모델이 충분히 학습 가능하다는 증거 제시

(Transformer Architecture and Our Modifications)

◆ 기본 트랜스포머 구조

트랜스포머는 일반적으로 두 가지 주요 구성 요소로 이루어진 블록을 여러 개 쌓아 구성됩니다:

- 1. 어텐션 계층 (Attention Layer)
- \rightarrow 입력 간의 상호작용을 캡처하며, 쿼리(Q), 키(K), 값(V) 벡터를 사용하여 입력 토큰 간의 관계를 계산합니다.
- 2. 피드포워드 계층 (Feed-Forward Network, 즉 MLP)
 - → 어텐션으로부터 얻은 표현을 정교화하고 확장하는 역할을 합니다.
- 각 블록은 다음과 같은 순서로 처리됩니다:
 - LayerNorm → Attention → LayerNorm → MLP

- 1. LayerNorm (레이어 정규화)
- · LayerNorm은 입력을 정규화하여 학습을 안정화시키고, 각 층에서의 출력값이 일정한 분포를 갖도록 합니다.
- 2. Attention (어텐션)
- 어텐션 메커니즘은 모델이 입력 데이터에서 중요한 부분에 집중하도록 도와줍니다. 트랜스 포머 모델에서 어텐션은 특히 Self-Attention이라고 불리며, 각 입력 요소가 다른 입력 요소들과 얼마나 관련이 있는지 계산하여, 중요한 정보에 더 많은 가중치를 부여합니다.
- 3. LayerNorm (레이어 정규화)
- 두 번째 LayerNorm은 어텐션 단계를 거친 후 결과를 다시 정규화하여 모델의 출력을 안정화시킵니다. 첫 번째 정규화 후 모델이 학습한 특성들이 잘 정규화된 상태에서 다음 단계를 진행할 수 있도록 돕습니다.
- 4. MLP (다층 퍼셉트론)
- · MLP는 비선형 변환을 수행하는 신경망의 구성 요소입니다. MLP는 일반적으로 여러 개의 은닉층을 포함하며, 각 층을 통과하면서 입력을 비선형적으로 변환합니다.

(Transformer Architecture and Our Modifications)

◆ 어텐션 메커니즘의 수식

전형적인 Scaled Dot-Product Attention은 다음과 같은 수식으로 표현됩니다:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

여기서,

- · Q: 쿼리 행렬, K: 키 행렬, V: 값 행렬
- dkd_kdk: 키 벡터의 차원 수

이 수식에서 핵심은 소프트맥스를 거친 QK^T의 유사도 행렬을 V에 곱해 중요한 정보를 취합한다는 것입니다.

- 1. LayerNorm (레이어 정규화)
 - · LayerNorm은 입력을 정규화하여 학습을 안정화시키고, 각 층에서의 출력값이 일정한 분포를 갖도록 한다.
- 2. Attention (어텐션)
 - 어텐션 메커니즘은 모델이 입력 데이터에서 중요한 부분에 집중하도록 도와준다. 트랜스포머 모델에서 어텐션은 특히 Self-Attention이라고 불리며, 각 입력 요소가 다른 입력 요소들과 얼마나 관련이 있는지 계산하여, 중요한 정보에 더 많은 가중치 부여
- 3. LayerNorm (레이어 정규화)
 - 두 번째 LayerNorm은 어텐션 단계를 거친 후 결과를 다시 정규화하여 모델의 출력을 안정화하며, 첫 번째 정규화 후 모델이 학습한 특성들이 정규화된 상태에서 다음 단계를 진행할 수 있도록 돕는다.
- 4. MLP (다층 퍼셉트론)
 - MLP는 비선형 변환을 수행하는 신경망의 구성 요소이며, MLP는 일반적으로 여러 개의 은닉층을 포함하며, 각 층을 통과하면서 입력을 비선형적으로 변환하게 된다.

- 이 논문에서는 트랜스포머를 구성하는 요소들 중 일부를 제거하거나 단순화함으로써 구조를 최소화하려 합니다.
- 1. MLP 제거,
 - 대부분의 트랜스포머 블록에서 상당수의 파라미터는 MLP에서 발생합니다.
 - 어텐션만으로도 비선형성을 충분히 학습할 수 있다고 가정하고, MLP를 완전히 제거합니다.』
 - 이로 인해 계산량과 메모리 사용량이 큰 폭으로 감소합니다...
- 2. Q = K = V 통합」
 - 일반적으로 Q, K, V는 서로 다른 가중치 행렬을 통해 생성됩니다.』
 - 하지만 이들을 하나의 공통 행렬 W로 통합하여 : Q=K=V=XW」
 - → 이렇게 하면 매개변수 수가 세 배에서 한 배로줄어듭니다.』
- 3. 대칭적인 유사도 계산 도입,
 - 기존의 QKT는 비대칭적인 유사도를 생성할 수 있어, 입력 간 유사도 해석이 불안정할 수 있습니다.』
 - 이를 개선하기 위해 아래와 같은 대칭 유사도를 도입합니다:

- 이 방식은 수학적으로 더 안정적이며, 쌍방향 상호작용의 균형을 제공하게 된다.
- 연산량 또한 절반으로 줄어드는 효과가 있다.
- 예시 : 아키텍처 요약 (수정된 트랜스포머 블록)

$$ext{Sim}(x_i,x_j) = rac{1}{2}(x_i^Tx_j + x_j^Tx_i)$$

구성 요소	기존 트랜스포머	우리의 간소화 버전			
MLP	Ο	X 제거됨			
Q, K, V 분리	O	🗶 하나의 행렬로 통합			
유사도 계산 방식	비대칭 (QK™)	☑ 대칭적 계산 적용			
파라미터 수	많음	훨씬 적음			

4.1 실험 환경 및 설정

- * 데이터셋
 - · MNIST: 손글씨, 숫자(0~9)의 그레이스케일 이미지 분류 (28x28, 흑백, 10클래스)
- CIFAR-10: 10개의 서로 다른 객체 사물 이미지 분류 (32x32, 컬러, 10클래스) 두 데이터셋 모두 이미지 분류 작업으로, 트랜스포머가 자연어 외에 시각적 데이터에 적용될 수 있음을 평가하기 적합하다.

* 모델 설정

- 입력 이미지는 패치 단위로 나누어 임베딩한 후 트랜스포머에 입력
- · 트랜스포머 블록 수 : 실험에 따라 1~4개
- ・ 하이퍼파라미터 : 학습률, 배치 사이즈 등은 동일하게 설정

4.2 실험 조건 및 비교 모델 우리는 다음 네 가지 아키텍처 구성을 비교 대상으로 실험하였다:

모델 번호	구성 설명		
Full Transformer (Baseline)	전통적인 트랜스포머: 어텐션 + MLP		
No-MLP	MLP 제거, 어텐션만 사용		
Q=K=V 통합	쿼리, 키, 값을 하나의 공통 행렬로 생성		
대칭 어텐션	QK™ 대신 대칭 유사도 계산 사용		

이 외에도 모든 수정 사항을 동시에 적용한 최소 아키텍처도 별도로 실험하였다.

4.3 결과 및 분석

- ◆ 정확도 (Accuracy)
- * MNIST
 - · Full Transformer: 약 99.3% Minimal Transformer: 약 99.2%
- * CIFAR-10
 - · Full Transformer: 약 71.5% Minimal Transformer: 약 70.8%
 - → 모든 수정 사항을 적용한 간소화 모델도 거의 동등한 성능을 유지함을 확인됨.
- ◆ 파라미터 수 (Parameter Count)
- · 기존 트랜스포머 대비, 최대 90%까지 파라미터 수 절감
- · 특히 MLP와 Q/K/V 통합에서 절감 효과가 큼
- 학습 속도 및 수렴 (Convergence)
- 간소화 모델은 더 빠르게 수렴함
- 오버피팅 경향도 적음, 더 일반화된 결과를 보임.

4.4 핵심 요약

- · MLP는 반드시 필요하지 않다: 제거해도 성능 유지
- · Q=K=V 통합: 성능 유지되며 파라미터 절감 효과 큼
- 대칭 유사도 계산: 안정적인 수렴 및 계산량 절감
- 최소 구성의 트랜스포머도 실전에서 충분히 효과적

5. 결론(Conclusion)

본 연구는 트랜스포머 아키텍처에서 흔히 사용되는 구성 요소들 중 일부가 반드시 필요하지 않을 수도 있다는 가능성을 실험적으로 제시했다.

- 📌 핵심 결론 요약
 - · MLP 제거

트랜스포머 블록에서 MLP를 완전히 제거해도, 다양한 데이터셋에서 성능 손실 없이 분류 정확도를 유지할 수 있음을 확인했다.

· 쿼리/키/값(Q, K, V)의 통합

세 개의 서로 다른 가중치 행렬을 사용하는 대신, 하나의 공통 행렬을 통해 생성함으로써 모델을 간단하게 만들 수 있고, 이 경우에도 성능 저하 없이 작동할 수 있다.

• 대칭적인 유사도 계산 방식

기존의 비대칭적인 어텐션 유사도 계산 대신, 대칭 구조를 적용하여 더 안정적인 수렴과 계산량 절감 효과를 확인했다.

5. 결론(Conclusion)

♀ 연구의 의의

이러한 실험 결과들은 다음과 같은 중요한 시사점을 제공합니다:

1. 모델의 최소화 가능성

트랜스포머 구조는 본래 생각했던 것보다 훨씬 단순화 가능하며, 복잡한 구조를 유지하지 않더라도 고성능을 유지할 수 있습니다.

2. 해석 가능한 구조로의 전환

구성 요소가 줄어들수록 모델이 어떤 방식으로 학습하는지 해석이 용이해지며, 이는 신뢰성과 안정성이 중요한 분야에서 더 큰 장점이 됩니다.

3. 자원 제약 환경에서의 활용 가능성

파라미터 수와 연산량이 감소한 간소화된 트랜스포머는 엣지 디바이스, 모바일환경, 저전력 시스템등에서도 실용적으로 활용될 수 있는 가능성을 보여줍니다.

5. 결론(Conclusion)

- ❸ 향후 연구 방향
 - 더욱 복잡한 데이터셋(예: ImageNet, 자연어 처리 코퍼스)에서의 성능 검증
 - 다중 레이어 구조에서도 이러한 최소화 전략이 효과적인지에 대한 탐구
 - 어텐션 구조 자체를 더 간결하게 만드는 이론적 분석 및 최적화

이 논문은 트랜스포머를 성능 저하 없이 단순화할 수 있다는 실험적 증거를 제시하며, 향후 다양한 연구자들이 경량 딥러닝 모델 설계에 참고할 수 있는 기초를 마련합니다.

1. 수식 (1):

$$z_{si} = \left(\sum_{j=1}^i a_{sij} x_{sj}
ight) W_s^V W_s^O$$

• 이 수식은 입력 임베딩 x_{si} 의 가중 평균을 구하는 방식입니다. x_{si} 는 각 단어 임베딩을 의미하며, W_s^V 와 W_s^O 는 각각 벡터 공간 변환을 위한 행렬입니다. 각 입력의 가중치는 a_{si} 로 나타내며, 이 가중치는 뒤에서 설명할 Softmax 함수로 계산됩니다.

2. 수식 (2):

$$a_{si} = \operatorname{Softmax}(s_{si})$$

• a_{si} 는 Softmax 함수를 통해 계산되는 가중치 벡터입니다. Softmax 함수는 각 단어의 중요도를 결정하며, s_{si} 는 특정 쿼리 토큰과 다른 토큰 간의 유사도를 나타내는 값입니다. 이를 통해 가중치를 계산합니다.

3. 수식 (3):

$s_{sij} = x_{si} W^Q_s W^K_s^T x_{sj}$

• s_{sij} 는 쿼리 토큰 x_{si} 와 다른 토큰 x_{sj} 간의 유사도를 나타냅니다. 여기서 W_s^Q 와 W_s^K 는 각각 쿼리와 키 변환 행렬이며, 이 행렬들의 내적을 통해 유사도를 계산합니다.

4. 수식 (4):

$$z_{si} = \sum_{h=1}^{H} \left(\sum_{j=1}^{i} a_{shij} x_{sj}
ight) W_{sh}^V W_{sh}^O$$

- 이 수식은 "멀티 헤드 어텐션"에서 사용됩니다. 여러 헤드를 사용하여 각각 독립적으로 계산한 후결과를 합산합니다. 각 헤드는 W_h^Q , W_h^K , W_h^V , W_h^O 라는 별도의 변환 행렬을 사용하여 계산됩니다.
- 5. 수식 (5):

$$a_{shi} = \operatorname{Softmax}(s_{shi})$$

• 각 헤드에서의 가중치 a_{shi} 는 Softmax 함수로 계산됩니다. s_{shi} 는 각 헤드에 대해 계산된 유사도 값으로, 이를 통해 해당 헤드의 중요도를 결정합니다.

수식 (6):

$s_{shij} = x_{si} W^Q_{sh} W^K_{sh}^T x_{sj}$

• 이 수식은 특정 쿼리 토큰 x_{si} 와 다른 토큰 x_{sj} 간의 유사도를 계산하는 수식입니다. 여기서 W_{sh}^Q 와 W_{sh}^K 는 각각 쿼리와 키 변환 행렬로, 이들을 사용하여 두 토큰 간의 유사도를 계산합니다.

수식 (7):

$$h_{si}=f\left(z_{si}W_s^{(1)}+b_s^{(1)}
ight)$$

• 이 수식은 다층 퍼셉트론(Multi-Layer Perceptron, MLP)의 첫 번째 층을 나타냅니다. z_{si} 는 중간 임베딩 벡터로, 이 벡터에 대해 가중치 행렬 $W_s^{(1)}$ 과 편향 벡터 $b_s^{(1)}$ 를 적용하고, 그 결과에 비선형 함수 f()를 적용하여 h_{si} 를 계산합니다. 이때 비선형 함수 f()는 일반적으로 Gaussian Error Linear Unit (GELU)가 사용됩니다.

수식 (8):

$$y_{si} = h_{si} W_s^{(2)} + b_s^{(2)}$$

ullet 이 수식은 다층 퍼셉트론의 두 번째 층을 나타냅니다. 첫 번째 층에서 계산된 h_{si} 에 대해 다시 가중 지 행렬 $W_s^{(2)}$ 와 편향 벡터 $b_s^{(2)}$ 를 적용하여 최종 출력 벡터 y_{si} 를 계산합니다.

이 수식들은 다층 퍼셉트론(MLP) 구조를 설명하며, 주로 신경망에서 사용되는 기본적인 층 연산을 보여줍니다. f()는 비선형 활성화 함수이며, 보통 GELU 함수가 사용됩니다.

- 멀티 헤드 어텐션(Multi-Head Attention).
 - 스택의 모든 트랜스포머에 대해 다음과 같은 처리는 어텐션 메커니즘(멀티 헤드 어텐션 또는 MHA)에 의해 수행됩니다.
 - 스택의 s번째 트랜스포머에서 훈련 샘플의 입력(전체 개수 S 중)은 입력 벡터 x_{si}의 시퀀스입니다.
 - 이 시퀀스는 동일하게 긴 출력 임베딩 z_{si} 시퀀스로 변환됩니다.

수식은 트랜스포머 인코더 레이어의 연결을 나타내며, 아래와 같은 방식으로 구성됩니다:

1. 수식 (8):

$$y_1i=\left(\sum_{j=1}^i a_{1ij}x_{1j}
ight)W_1^{VO}$$

- y_1i 는 첫 번째 출력 값입니다. 이 값은 각 입력 값에 대해 가중치 a_{1ij} 를 곱하고, 이를 W_1^{VO} 행렬로 변환한 결과입니다.
- 2. 수식 (9):

$$y_2i=\left(\sum_{j=1}^i a_{2ij}y_{1j}
ight)W_2^{VO}$$

- ullet ullet y_2i 는 두 번째 출력 값입니다. 첫 번째 출력인 y_1i 에 대해 다시 가중치 a_{2ij} 를 곱한 후, 이를 W_2^{VO} ullet 행렬로 변환한 결과입니다.
- 3. 수식 (10):

$$y_3 i = \left(\sum_{k=1}^i a_{2ik} \left(\sum_{j=1}^k a_{1kj} x_{1j}
ight)
ight) W_1^{VO} W_2^{VO}$$

• y_3i 는 세 번째 출력 값입니다. 두 개의 합성 과정이 포함되어 있으며, 첫 번째 단계에서 x_{1j} 에 대해 가중치 a_{1kj} 를 곱하고, 두 번째 단계에서 이 값에 대해 a_{2ik} 가중치를 곱한 후, $W_1^{VO}W_2^{VO}$ 행렬로 변환합니다.

4. 결과:

• 이 수식은 여러 레이어가 순차적으로 연결된 형태입니다. 최종 출력은 여러 번의 연산을 통해 가중 치를 적용하고, 마지막으로 $W_{\cdot}^{VO}W_{\cdot}^{VO}$ 행렬을 통해 변환된 값입니다.

3. 싱글 헤드 구성

When stacking the attention modules, the matrices W_s^{VO} concatenate to their product over s = 1, ..., S. Then, they collapse into a single matrix

$$W^{VO} = \prod_{s=1}^{S} W_s^{VO} \tag{9}$$

Since every sum $\sum_{j=1}^{i} a_{sij}$ is equal to unity (as a result of the softmax operation), every successive transformer layer performs a weighted mean of stacked inputs x_{1j} .

The total number of parameters with S matrices W_s^{QK} and a single matrix W^{VO} is $(S+1)N^2$, only slightly more than 25% of the original size without MLP. So far, all this is possible without losing any expressive power of the single-head transformer without MLP — only obsolete parameters are deleted.

"어텐션 모듈을 쌓을 때, 행렬 $W^V_sO_s$ 는 $s=1,\ldots,S$ 에 대해 그들의 곱으로 이어집니다. 그런 다음 이들은 단일 행렬로 축소됩니다.

$$W^VO=\prod_{s=1}^S W^VO_s$$
 (9)

(9) 각각의 합 $\sum_{j=1}^i a_{sij}$ 가 소프트맥스 연산의 결과로 1이므로, 각 후속 변환 층은 쌓인 입력 x_{1j} 의 가중 평균을 수행합니다.

 W^QK_s 와 단일 행렬 W^VO 로 이루어진 파라미터의 총 수는 $(S+1)N^2$ 로, MLP 없이 원래 크기의 25%보다 조금 더 많습니다. 지금까지 모든 것이 단일 헤드 트랜스포머에서 MLP 없이도 가능한 것으로, MLP는 단지 불필요한 파라미터들만 삭제되었습니다."

수식 설명:

• 수식 (9):

$$W^VO = \prod_{s=1}^S W^VO_s$$

• 이 수식은 S개의 어텐션 모듈을 쌓은 후, 이들 행렬 W^VO_s 가 하나의 행렬로 축소되는 과정을 나타냅니다. 각 어텐션 모듈이 가질 수 있는 출력 행렬 W^VO_s 는 최종적으로 전체 트랜스포머 모델에 통합되어 W^VO 라는 단일 행렬을 형성합니다. 이 과정을 통해 트랜스포머의 여러 레이어에서 발생하는 파라미터가 축소되고, 모델의 복잡성을 줄이면서도 효과적인 표현을 유지할 수 있습니다.

추가 설명:

- 소프트맥스 연산: 각 어텐션 가중치 a_{sij} 는 소프트맥스 연산에 의해 결정됩니다. 이 연산의 결과로 가중 치의 합은 항상 1이 되며, 이는 각 입력 토큰에 대한 가중 평균을 계산하는 데 사용됩니다.
- 파라미터 수: 트랜스포머에서의 파라미터 수는 W^QK_s 와 W^VO 를 포함하여 계산됩니다. MLP를 제외한 트랜스포머에서는 파라미터 수가 원래 크기의 약 25%로 축소됩니다. 이는 모델의 효율성을 높이며, 더 적은 파라미터로도 동일한 성능을 유지할 수 있음을 의미합니다.

$$z_{si} = \sum_{j=1}^{i} a_{sij} x_{sj} \tag{10}$$

The output embedding z_{Si} is a convex combination of input embeddings x_{1i} . In other words, it is a member of the convex set spanned by x_{1i} .

This concept has been implemented in the Keras framework by setting the matrices W_s^V and W_s^O to unit matrices. Collapsing $W_s^Q W_s^{KT}$ to W_s^{QK} has been reached by setting the matrix W_s^K to a unit matrix. The newly defined matrix W_s^{QK} replaces matrix W_s^Q .

"출력 임베딩 z_{si} 는 입력 임베딩 x_{1i} 들의 볼록 조합입니다. 다시 말해, z_{si} 는 x_{1i} 로 펼쳐진 볼록 집합의 구성 원입니다.

이 개념은 Keras 프레임워크에서 행렬 W^V_s 와 W^O_s 를 단위 행렬로 설정하여 구현되었습니다. $W^SW^{KT}_S$ 를 W^S 로 축소하는 것은 행렬 W^K 를 단위 행렬로 설정하여 달성되었습니다. 새롭게 정의된 행렬 W^SQK 는 행렬 W^Q_s 를 대체합니다."

수식 설명:

• 수식 (10):

$$z_{si} = \sum_{j=1}^i a_{sij} x_{sj}$$

• 이 수식은 출력 임베딩 z_{si} 가 입력 임베딩들 x_{sj} 의 가중 평균으로 계산된다는 것을 나타냅니다. 가 중치 a_{sij} 는 각 입력 임베딩에 대해 계산된 가중치를 의미합니다. 이는 어텐션 메커니즘에서 입력 임베딩의 중요한 특징을 반영하는 값입니다.

추가 설명:

- **볼록 조합**: z_{si} 는 입력 임베딩들의 가중 평균이며, 이들은 특정 벡터 x_{1i} 로 펼쳐지는 볼록 집합에 속합니다. 이는 트랜스포머에서 입력 정보의 결합 방법을 설명하는 중요한 개념입니다.
- Keras 구현: 이 아이디어는 Keras 프레임워크에서 구현되어 있으며, 행렬을 단위 행렬로 설정하는 방식으로 최적화됩니다. $W^SW_S^{KT}$ 는 단순화되어 W^S 로 축소되며, 새롭게 정의된 행렬 W^SQK 는 이전의 W_c^Q 를 대체합니다.

4. MULTI-HEAD CONFIGURATION

The relationships of Section 3 are valid wherever the matrices W_{sh}^V , W_{sh}^O , W_{sh}^Q , and W_{sh}^K are square. This may also apply to multiple heads. However, it is usual to commit to a reduced dimension per head. With H > 1 heads, it is common to map the embedding vector to a narrower vector of width N/H, assumed to be integer.

In such cases, the matrices W_{sh}^V , W_{sh}^O , W_{sh}^Q , and W_{sh}^K are not square but of dimension (N, N/H). Collapsing $W_{sh}^Q W_{sh}^{KT}$ to W_{sh}^{QK} is then no longer efficient since W_{sh}^{QK} is of dimension (N, N) and has thus N^2 parameters while W_{sh}^Q and W_{sh}^K together have $2N^2/H$, which is a smaller or equal number for H > 1.

Moreover, it is impossible to equivalently concatenate the value/projection matrices W_{sh}^{VO} to a unique product because of varying index h along various paths through the heads.

Nevertheless, omitting the W_{sh}^{VO} at all would have the same justification as for single-head configuration: the output embedding z_{Si} would become a convex combination of input embeddings x_{1i} , which can be expected to correspond to a meaningful word or token.

"섹션 3의 관계는 행렬 $W^V_{sh},W^O_{sh},W^Q_{sh},W^K_{sh}$ 가 정사각형일 때 유효합니다. 이는 멀티-헤드에도 적용됩니다. 그러나 각 헤드마다 축소된 차원에 맞추는 것이 일반적입니다. H>1일 경우, 임베딩 벡터를 N/H 너비를 가진 더 좁은 벡터로 매핑하는 것이 일반적이며, 이는 정수로 가정됩니다.

이러한 경우, 행렬 $W^V_{sh},W^Q_{sh},W^Q_{sh},W^K_{sh}$ 는 정사각형이 아니고, 차원은 (N,N/H)입니다. $W^Q_{sh}W^{KT}_sh$ 를 W^Q_{sh} 로 축소하는 것은 더 이상 효율적이지 않습니다. 왜냐하면 W^Q_{sh} 의 차원이 (N,N)이고, 따라서 N^2 개의 파라미터를 가지게 됩니다. 반면에 W^Q_{sh} 와 W^K_{sh} 는 $2N^2/H$ 개의 파라미터를 가지고, 이는 H>1일 때 더 적은 숫자입니다.

또한, 헤드마다 다양한 경로를 통해 인덱스 h가 달라지기 때문에, 값/프로젝션 행렬 W^VO_{sh} 를 하나의 곱으로 동등하게 연결하는 것은 불가능합니다.

그럼에도 불구하고, W^V_{sh} 를 전혀 생략하면 단일 헤드 구성과 동일한 정당성을 가집니다. 출력 임베딩 z_{Si} 는 입력 임베딩 x_{1i} 의 볼록 조합이 되며, 이는 의미 있는 단어 또는 토큰에 해당하는 것으로 예상될 수 있습니다."

5. SYMMETRY OF SIMILARITY

The expression Eq. (3) measures the similarity between queries and keys. The general concept of characterizing similarity between vectors by their product is symmetric: a is equally similar to b as is b to a.

evaluated with the help of $x_{si}W_{sh}^{Q}W_{sh}^{KT}x_{si}^{T}$ is asymmetric. This is because the matrices W_{sh}^Q and W_{sh}^K are potentially different.

This asymmetry leads to different similarities between x_{si} and x_{si} in the roles of key and query: x_{si} is not as similar to x_{si} as is x_{si} to x_{si} . The vector x_{si} is also not the most similar to itself. The matrix product 설명: even guaranteed that the similarity of x_{si} to itself is positive.

The asymmetry can be deliberate and justified from some viewpoints. It is not a matter of course that the roles of queries and keys are symmetric. However, some of the mentioned properties can make its use harmful.

"식 (3)은 쿼리와 키 사이의 유사도를 측정합니다. 벡터 간 유사성을 그들의 내적으로 특징짓는 일반적인 개 념은 대칭적입니다: a는 b와 마찬가지로 b는 a와 동일하게 유사합니다.

 W_{sb}^Q 와 W_{sb}^K 가 본질적으로 다르기 때문입니다.

> 이 비대칭성은 키와 쿼리 역할을 하는 x_{si} 와 x_{sj} 간에 다른 유사도를 초래합니다: x_{si} 는 x_{sj} 와 비교할 때 x_{si} 만큼 유사하지 않습니다. 벡터 x_{si} 는 자신에게 가장 유사하지도 않습니다. 행렬 곱 $W_{sh}^Q W_{sh}^{KT}$ 는 일반적 으로 양의 정부호가 아니므로, x_{si} 와 자신 간의 유사도가 양의 값이 될 것이라고 보장되지 않습니다.

> 이 비대칭성은 일부 관점에서 의도적으로 정당화될 수 있습니다. 쿼리와 키 역할이 대칭적이어야 한다는 것 은 당연한 문제가 아닙니다. 그러나 앞서 언급된 몇 가지 특성은 그 사용을 해롭게 만들 수 있습니다."

 $W_{sh}^QW_{sh}^{KT}$ is generally not positive definite, so it is not 이 텍스트는 트랜스포머 모델에서 쿼리와 키 간의 유사도를 계산하는 방식에 대한 설명입니다. 일반적으로 벡터 간의 유사도는 대칭적이어야 하지만, 트랜스포머의 경우 쿼리와 키 간의 유사도는 비대칭적이라는 점 을 강조합니다. 행렬 W_{sb}^Q 와 W_{sb}^K 의 비대칭성으로 인해 벡터 간 유사도가 다르게 계산되며, 이로 인해 유사 도가 자기 자신과 비교할 때 반드시 양수가 되지 않는 문제도 발생할 수 있습니다.

The symmetry can be guaranteed by simply setting $W_{sh}^Q = W_{sh}^K$. Then, half of the parameters dedicated to the query and key matrices can be economized. In the single-head case, the same effect is reached by a symmetric matrix W_s^{QK} , with identical parameters mirrored over the diagonal, i.e., $w_{sij}^{QK} = w_{sji}^{QK}$. Another possibility is to parameterize a lower triangular matrix T_s^{QK} and to multiply it by its transpose, getting

$$W_s^{QK} = T_s^{QK} T_s^{QKT} \tag{11}$$

This amounts to the well-known *Cholesky decomposition* (Cholesky, 1924) of a symmetric matrix.

With both methods, the number of parameters is $\frac{N(N+1)}{2}$ instead of N^2 , or even $2N^2$ of the original version without collapsing W^Q and W^K .

The symmetry is implemented by reusing W_{sh}^Q as W_{sh}^K , omitting the use of W_{sh}^K at all.

"대칭성은 $W_s^Q=W_s^K$ 로 설정함으로써 보장할 수 있습니다. 그러면 쿼리와 키 행렬에 할당된 파라미터의 절반을 절약할 수 있습니다. 단일 헤드의 경우, 동일한 효과는 대칭 행렬 W_s^Q 로 달성되며, 대각선을 따라 동일한 파라미터 $w_{sij}^Q=w_{sji}^Q$ 가 있습니다. 또 다른 가능성은 하삼각 행렬 T_s^Q 를 파라미터화하고 그것을 전치 행렬과 곱하는 것입니다. 이렇게 하면 다음과 같습니다:

$$W_s^Q = T_s^Q T_s^{QT}$$

이것은 대칭 행렬의 잘 알려진 촐레스키 분해(Cholesky, 1924)에 해당합니다.

두 방법 모두에서 파라미터 수는 $\frac{N(N+1)}{2}$ 로, 원래 버전의 N^2 또는 심지어 $2N^2$ 보다 적습니다. 이는 W^Q 와 W^K 를 축소하지 않고도 가능합니다.

(11) 대칭성은 W_{\circ}^Q 와 W_{\circ}^K 를 재사용하고, W_{\circ}^K 의 사용을 생략하여 구현됩니다."

설명:

이 텍스트는 트랜스포머 모델에서 쿼리와 키 행렬의 대칭성을 구현하는 방법을 설명하고 있습니다. W_s^Q 와 W_s^K 를 동일하게 설정하여 파라미터 수를 절감할 수 있는 방법을 제시하고, 이를 통해 효율적인 모델을 설계하는 방법을 다룹니다. 촐레스키 분해를 사용하여 행렬을 파라미터화하고, 이로 인해 파라미터 수를 줄일수 있는 방법을 설명합니다.

6.1 Results for MNIST

Following the arguments of Sections 2 to 5, the following reduced transformer variants have been tested:

- with and without an MLP in each transformerencoder,
- with 1 and 4 heads,
- with the original matrix configuration as well matrix pair W^Q and W^K collapsed into one matrix, W^V and W^O omitted (one head variants only), and

"6.1 MNIST에 대한 결과

섹션 2부터 5까지의 주장을 따라, 다음과 같은 축소된 트랜스포머 변형들이 테스트되었습니다:

- 각 트랜스포머 인코더에서 MLP가 있는 경우와 없는 경우,
- 1개 및 4개의 헤드를 사용하는 경우,
- 원래의 행렬 구성과 W^Q 및 W^K 행렬 쌍을 하나의 행렬로 축소하고, W^V 와 W^O 를 생략한 경우(단일 헤드 변형만 해당).

표 1: 6개 또는 12개의 연속된 트랜스포머 인코더와 각 인코더 레이어당 1개 또는 4개의 어텐션 헤드를 사용한 두 데이터셋(MNIST 및 CIFAR-10)에서의 16개 실험 결과. 각 인코더 레이어 내에서 기본 MLP를 사용하거나 MLP를 완전히 생략한 경우의 실험. 각 모델은 정확히 500 에폭 동안 훈련된 후 훈련 세트와 검증 세트에 대한 손실과 정확도가 보고됩니다.

Dataset	#Encs-#Heads	MLP?	Q	Train loss	Val. loss	Train. acc. [%]	Val. acc. [%]
	6-1	yes	2.15	0.0067	0.0747	99.78	98.38
	6-1	no	6.46	0.0277	0.1023	99.07	97.49
	6-4	yes	2.09	0.0018	0.0739	99.95	98.26
MNIST	6-4	no	5.91	0.0021	0.0912	99.92	98.29
MINIST	12-1	yes	1.08	0.0052	0.0652	99.81	98.71
	12-1	no	3.29	0.0117	0.0970	99.62	97.94
	12-4	yes	1.08	0.0025	0.0656	99.92	98.70
	12-4	no	3.29	0.0026	0.1002	99.93	98.10
	6-1	yes	1.74	0.1533	2.2418	94.63	60.24
	6-1	no	4.93	0.9341	1.3590	66.16	55.30
CIFAR-10	6-4	yes	1.74	0.1109	2.4033	96.01	60.46
	6-4	no	4.92	0.5621	1.6984	80.82	52.37
	12-1	yes	0.89	2.3026	2.3026	9.82	10.00
	12-1	no	2.52	0.5604	1.7219	79.48	54.06
	12-4	yes	0.89	0.0632	2.6379	97.92	58.02
	12-4	no	2.52	0.1787	2.3200	93.59	55.60

- 그림 1: MNIST에서 6개의 인코더 레이어를 사용하는 다양한 축소된 트랜스포머 인코더로 얻은 훈련 및 검증 손실.
- 가로축: 다양한 트랜스포머 인코더 변형을 나타내며, 각 레이블은 해당 모델설정을 나타냅니다. 예를 들어, "1H/MLP/unchanged"는 1개의 헤드와 MLP가 있는 변경되지 않은 설정을 의미합니다.
- "1H/NoMLP/PWqk+noWvVo"는 1개의 헤드와 MLP가 없으며, 일부 행렬이 변경 된 설정을 의미합니다.
- · 세로축: 손실(Loss) 값이며, 훈련 손실(녹색 바)과 검증 손실(파란색 바)로 나누어 표시됩니다.
- 훈련 손실과 검증 손실: 각 설정에 대해 훈련 손실과 검증 손실이 비교됩니다.
 훈련 손실은 일반적으로 모델이 학습하는 동안 점차적으로 감소하는 경향이 있으며, 검증 손실은 모델의 일반화 성능을 평가하는 데 중요한 지표입니다.

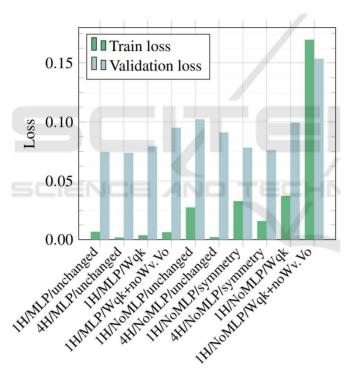


Figure 1: Training and validation losses attained by various reduced transformer-encoders with six encoder layers on MNIST.

- 비대칭적 및 대칭적 유사도 측정을 사용하는 경우.
- 나타낸 변형들은 행렬 옵션에 해당합니다:
 - unchanged는 원래의 어텐션 모듈 행렬 변형에 해당합니다.
 - Wqk 변형은 곱셈에 대해 단일 행렬을 사용합니다: W^QW^{KT} ; 이 변형은 단일 어텐션 헤드에만 사용 가능하며, 그들의 유사도 측정은 원래 버전처럼 비대칭적입니다.

Table 2: Loss and accuracy for different variants of transformer-encoder modifications on MNIST: 1 or 4 heads, with or without the MLP, with a single W_{qk} matrix, no value and projection matrices, or a symmetric similarity measurement.

# Heads	MLP?	Modification	# Parameters	Q	Train loss	Val. loss	Train. acc. [%]	Val. acc. [%]
1	yes	unchanged	279,106	2.15	0.0067	0.0747	99.78	98.38
4	yes	unchanged	287,746	2.09	0.0018	0.0739	99.95	98.26
1	yes	Wqk	257,506	2.33	0.0037	0.0794	99.89	98.43
1	yes	Wqk+noWv,Vo	212,866	2.82	0.0063	0.0951	99.78	98.27
1	no	unchanged	92,890	6.46	0.0277	0.1023	99.07	97.49
4	no	unchanged	101,530	5.91	0.0021	0.0912	99.92	98.29
1	no	symmetry	69,910	8.58	0.0331	0.0783	98.85	97.80
4	no	symmetry	69,910	8.58	0.0158	0.0762	99.46	98.24
1	no	Wqk	70,570	8.50	0.0374	0.0996	98.70	97.60
1	no	Wqk+noWv,Vo	26,650	22.51	0.1697	0.1536	94.82	95.32

설명:

- 헤드 수 (# Heads): 모델이 사용하는 어텐션 헤드의 수입니다. 실험에서는 1개 또는 4개의 헤드가 사용되었다.
- MLP? : 각 트랜스포머 인코더 레이어에서 MLP(다층 퍼셉트론) 사용 여부를 나타냅니다. "예"는 MLP를 사용한 모델을, "아니오"는 MLP를 생략한 모델을 의미합니다.
- 변형: 모델에서 사용된 특정 변형을 나타냅니다. 예를 들어, "Wqk"는 쿼리와 키 행렬을 단일 행렬로 사용하는 변형을 의미하고, "대칭성"은 대칭적 유사도 측정을 사용한 변형을 의미합니다.
- 파라미터 수: 모델에서 사용된 총 파라미터 수입니다.
- · Q: 과다 결정 비율을 나타내며, 모델이 얼마나 충분히 결정되었는지의 척도를 제공합니다.
- 훈련 손실 (Train loss): 훈련 데이터에서 계산된 손실 값입니다. 모델이 훈련 세트에서 얼마나 잘 학습되었는지 나타냅니다.
- 검증 손실 (Val. loss): 검증 데이터에서 계산된 손실 값입니다. 모델의 일반화 성능 이다.
- 훈련 정확도 (Train acc.): 훈련 세트에서 모델의 정확도입니다.
- 검증 정확도 (Val. acc.): 검증 세트에서 모델의 정확도입니다.

# 헤드 MLP	MI D2	1LP? 변형	파라미터 수	Q	훈련 손실	검증 손실	훈련	검증
# 에드	# OII VILP:						정확도 [%]	정확도 [%]
1	예	변경되지 않음	279,106	2.15	0.0067	0.0747	99.78	98.38
4	예	변경되지 않음	287,746	2.09	0.0018	0.0739	99.95	98.26
1	예	Wqk	257,506	2.33	0.0037	0.0794	99.89	98.43
1	예	Wqk + noWv, Vo	212,866	2.82	0.0063	0.0951	99.78	98.27
1	아니오	변경되지 않음	92,890	6.46	0.0277	0.1023	99.07	97.49
4	아니오	변경되지 않음	101,530	5.91	0.0021	0.0912	99.92	98.29
1	아니오	대칭성	69,910	8.58	0.0331	0.0783	98.85	97.80
4	아니오	대칭성	69,910	8.58	0.0158	0.0762	99.46	98.24
1	아니오	Wqk	70,570	8.50	0.0374	0.0996	98.70	97.60
1	아니오	Wqk + noWv, Vo	26,650	22.55	0.1697	0.1536	94.82	95.32

이 표는 다양한 트랜스포머 변형이 MNIST 데이터셋에서 어떻게 성능을 발휘하는지 비교하고 있습니다. MLP가 있는 모델과 없는 모델의 성능 차이, 그리고 각 변형의 파라미터 수와 성능에 대한 영향을 살펴볼 수 있습니다. MLP가 있는 모델은 일반적 으로 더 좋은 성능을 보이지만, MLP가 없을 경우 더 적은 파라미터 수로도 괜찮은 성능을 유지하는 경우도 있음을 알 수 있습니다. Q & A

