A coupled-GAN architecture to fuse MRl and PET image features

for multi-stage classification of Alzheimer's disease
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1. Introduction

An adversarial learning-based fusion of MRl and PET scans has been proposed for Alzheimer’s disease(AD) diagnosis
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= 2=oI0|He| AHZ fIoH MRI, PET=
MRI scans contain structural atrophies, and PET scans consist of metabolicinformation.
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We aim to extract structural as well as metabolicinformation for effective diagnosis of AD
M E00IL|et AN BB S F=&6t= 22 SE =2 S

e e B YL

= = AR AN= L=510|He| £D| RIEtsS 2|6 ~AA
MRI and PET images are fused using adversarial learning-based coupled-GAN(cGAN) which uses dual convolutional auto encoders

early stage.

and discriminators to fuse both MRl and PET images.
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2. Literature review - Generative Adversarial Network(GAN)
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2. Literature review - Generative Adversarial Network(GAN)2| &&

* Conditional GAN
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* Pix2Pix
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* CycleGAN
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* [sola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition.2017.
* Zhu,Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE international conference on computer vision.2017.



3. Methodology - Pre-processing

* For acomprehensive automated diagnosis of AD, it is necessary to consider both the structural and metabolicinformation fromthe
MRI and PET images. = AD2| At &I 2o MRI2FPET F&e| AN HEQ AL A2 E 25 100k

» Certain pre—processing has been done to make both images suitable for the fusion.

= MRI2QHPET YAlC| 2 &tH 2 EM0| AZ LI22Z pre—processings =it}

» After preprocessing, the adversarial network is used for image fusion and classification.

= pre-processing 012 0|0]X| S& & 2/ E 4=845H}.

* Pre-processing &l = N o e

1) Realignment

- To eliminate motion artifacts.

2) Normalization j -

- To standardize the intensity values in both scans.

Image MRI & PET
Coregistration Coregistered
of MRI and PET Scans

Image Realignment Image Normalization Image Registration

3) Reg'St rat ion Fig. 1. Preprocessing pipeline of MRI and PET scans.

- To ensure that the two modalities fit together accurately.
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3. Methodology - coupled-GAN (cGAN)

* Proposed cGAN architecture
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3. Methodology - Convolution Auto-Encoders(CAE)

To fuse the mutually exclusive features from PET and MRl images, we propose to couple two Convolution Auto-Encoders (CAE) at
their latent space. = PET 2t MRI FAQ| AS HHEIECI SEASE E&o) | floll, & N2l CAEE & S2HHIM &2

(Auto—Encoder: 2122 HIOIEHE HIMEROZ =5l 2| HIEZ CIDE6HH, HE20 AEE %I@)
 We propose to encode the MRl and PET image separately into two separate latent vectors.

 Thesevectors are then added to form a fused latent representation.

= PETIUMRI &= 22 & 2l ST BB = 1DE et = Cot &= 8T £as gt

>.

* The fused latent space should logically contain the information required to reconstruct the MRl as well as the PET image
separately. = S&= &TH 2212 2 FAS MPHol=s Ol 28t B E TESHH (CFE g4 SE 0|0 ZH= AT TLSHE)
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3. Methodology - Generator & Discriminator

 Generator

» This generator model will yield two outputs of same shape as the inputs.
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* Discriminator

» Two separate critic networks, one for each of the generated output images, criticize the output pair from the generator.
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3. Methodology - Classifier

— > —» —

I:] Latent Representation

D 2D Convolution, stride = (1. 1)

- fully connected with ReL. U activation
m Global Average Pooling

. fully connected with softmax activation

Fig. 3. Proposed CNN architecture for classifier.

Based on the latent representation from the above CGAN network, the classification is done.
= cGAN UIERITS| &M HSES Do Z 22t HE=IC

(Z=GI0I0, B QIX| ZOH, =2tH J|4= Mo, 21X Ha)

For classification a separate convolution neural network (CNN) is built.

FZFE 7ol 22| CNNS =061

For training the classifier the same training data—set is used as for training the CGAN model.
= =& HI0IE2= cGAN 230l A= E! CIOIEMIERI s2et A= AFRZ0IRILH

The cost function used for training this network is categorical cross entropy:

> CNN2| S8 = ?loll AFZE! cost == HxE WAt HEZTIOICH.
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 GAN vs cGAN
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4. Experiment results

 ANDI Dataset

* Includes both males and females with a follow-up during the last 18 months.
 Agerange of 55t0 90 years.

* One hundred subjects have been chosen from each group—AD, MCI, SMC, and CN to conduct the experiments.
= 55~90 Al &40{ CHet 1 8JHE =0te| =& 2= [HI0|H
> AES 2l Z=6I0IH(AD), Z= OIX| ZOH(MCI), =& D19 XGHSMC), 1Al HAHCN) S 40 DS0IA 2H 1002 IEAH A A

* Implementation details

 From each class of both MRl and PET images, we have taken 800 image pairs for training purpose and the rest 200 image
pairs for testing purpose.
= 1,000&2] O|0IXI GIOIEf &4 =800 A2 5ts5, 200 A2 HIAE HIOIHZ AF=ZOIRILH

« We have trained the proposed cGAN for 70 iterations, and the classifier has been trained for 50 iterations.
= cGAN2 708, 2F7J|=508 &&0tQCE (BJ| E2 > cGAN 598, 2FI[17H1)
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4. Experiment results - Performance results

¢ Performance of the proposed method

'One vs. Rest'-ROC for all the classes

1'0 4 - |
Table 1
Performance parameters achieved by the proposed method. go.a Multimodality
Class Accuracy Sensitivity Specificity Precision Fl-score % 0.6 ap | 161 | 33 6 0
AD 80.5% 81% 99.19% 97% 88% €04 -
0 0 ] 2 _ CN 5 195 0 0
CN 97.5% 97% 93.5% 86% 91% 2 A= :gg curve n: :3 :iﬁg » g_:g:
MCI 100% 100% 92.67% 97% 99% 02 2 mnac e e e o ser | 0 0 12000 0
SMC 100% 100% 92.67% 100% 100% 0.0k bbb i e
“o0 02 04 o6 08 10 smc 0 0 0 |200
Overall 94.5% 95% 94.49% 95% 94% False Positive Rate
(a) ROC Curve (b) Confusion Matrix
Fig. 4. Performance of the proposed method.
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4. Experiment results - Performance results

¢ Comparison of single and multi-modality

'‘One vs. Rest'-ROC

'‘One vs. Rest'-ROC

____‘Onevs.Rest-ROC
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Tabiﬂ 2 E ‘,'— ROE curve of AD (BUE = 0,4875) 5 L — RDC curve of AD (AUC = 0,77) E ‘/'— HOC curve af AT (ALE = 065)
A - = = E 0z 27— ROC curve of CN (BUC = 0.79) = 0.2+ _e*" —— BDC curve of ON (ALIC = 0.74) = 02 o = ROC curva of CN (AUC = 0.70)
Comparison of[single] and multi-modality] g A camaF S WU = 1.0 il o5y T Ak amaar S G = 100
0.0 . . . : 0.0 0.0 . . . .
; EPE Py o 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Moda !.lt)’ ﬁCCIJ.[E.CY SEnSltl\flt}" SpE'CI.ﬁ.C lt}’ Precision Fl-score False Positive Rate False Positive Rate False Positive Rate
MRI 81.88% 82% 81.87% 82.5% 82% (a) MRI (b) PET (¢) Mutli-modality
PET 74.13% 74% 74.5% 74.5% 74%
| Fused 94.50/0 950/0 94'490/0 950/0 940/0 Fig. 5. ROC curve for Single and Multi Modality.
L PET Multimodality
Ap (168 ] 23 | 7 ap [ 138] 35 [ 27 0| ap|161] 33 | 6 | 0
oN | 54143 55 ex [ 52| 5|33 0| x| 51950
mer| 24| 20 |16 ver| 40 [ 20 [140] 0 | mal 0 200
smc| 0 | 0 | 0 200 oyel 0 | 0 [ 0 [200] smc| 0 0 [z00
(a) MRI (b) PET (c) Mutli-modality
Fig. 6. Confusion matrix for Single and Multi Modality.
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4. Experiment results - Performance results (Cont.)

¢ Comparison of different cGAN architecture

'‘One vs. Rest'-ROC for all the classes 'One vs. Rest'-ROC for all the classes 'One vs. Rest'-ROC for all the classes
10 / 10 10 |
808 8038 208
2 & &
206 Zos 206
Table 3 % 0.4 ] % 0.4 - é 0.4 2
Comparison of different CGAN architecture, Ll eermmem W e | | Rl A
,’J —— ROC curve of MCI (AUC = 0.71) # —— ROC curve of MCl (AUC = 0.72) : ’,’ —— ROC curve of MCI (AUC = 0.99)

- ot 4 * + T - ROC curve of SMC (AUC = 0.89) ROC curve of SMC (AUC = 1.00) -~ ROC curve of SMC (AUC = 1.00)
Architecture Accuracy Sensitivity Specificity Frecision ¥i-score 00 02 o2 o8 oa 10 Yoo o0z 04 08 08 10 00 02 o4  os o8 10
VGG16 64,7504 6504 647504 67% 6604 False Positive Rate False Positive Rate False Positive Rate
Resnet50 69.75% 70% 62% 73% 70% (a) VGG16 (b) Resnet50 (c) Proposed
Proposed 94.5% 95% 94.49% 95% 94%

Fig. 7. ROC curve for different architecture.
VGG16 Resnet50 ——
AD | 134 | 14 52| 0 Aty
AD | 97 1 (92| 0 o | 161 | 33 6
cN | 32 107 | 61| O CN 14 119 [ 67| 0 - P 195 0
& Comparison of time complexit e Tas 4 Taea] MOpiS |13 14200 1 el o [ o [a00
P P y smc| 14 | 28 | 4 |[184] o0l 0 | 0 | 0 [200) smc| 0o | 0 | o [200
Table 4 (a) VGG16 (b) Resnet50 (c) Proposed
Comparison of time complexity of different fusion techniques. Fig. 8. Confusion matrix for different architectures.
Architecture fps Test time/ image (s) Accuracy
VGGl6 84.33 0.0199 64.75%
Resnet50 97.23 0.0103 69.75%
Proposed 137.79 0.0073 94.5%
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5. Conclusion

AD includes structural, functional, metabolite, and chemical changes in the brain of the affected person.
=2 2XoI0|HE Tl #2H, J|sH, HAIE, 2FefX HHotE ILelst,
Diagnosis accuracy will increase if both the structural as well as metabolic alterations in the brain are considered.

> 2tk 0] PN B3It A BI5HE 2F D22 32 NEtel BSTE SIHAIZ 4 UC

The idea of this work is to fuse the MRl and PET images such that their feature set complement each other for classification of
different stages of AD. = 2 A= MRIZPET 0|0|X| &2 Soll M=22| SH= B0t (e &HHIC| 2=06I10|HE EFStCh

We demonstrated that the extracted fused feature set enables more accurate classification of AD stages than using features
from only MRl or PET images.

2> == 2 &l SE = AI=0tH 21 0|01X18] & =& 8= AF=Eaot

rir

NE0HEH o 27 = UTh= 1= =RloIRIL

In the future the cost function of the CGAN can be extended to accommodate constraints on the latent space representation so

that the proposed approach can be used for classification of data with larger number of classes.

> &= cCANS| HIE 42 &&= Soll M 2E U B2 2cdiA 2F0| 282 + U= AO0ICL
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