Linear Regression




. Linear Regression

= Minimize the cost function J(0)

1 — . N2
J© =5 (1a(x*) ~y)
» Error term

err = y® — ho(x®)

= Minimize the error

repeat until convergence{

6, <6, +77i(y(i) —h, (x(i)))xf.i) (for every )
i=1
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. Probabilistic interpretation

= Why might the least-squares cost function J be a reasonable choice ?

= et us assume that
y(l) = eTx(i) _|_ E(i)

v where €@ is an error term or random noise

v €M are distributed independently and identically according to a Gaussian distribution (i.e.,
Normal distribution)

eW~N(0,02)

= The density of e
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. Probabilistic interpretation

* This implies that

(i) — T x(D)?
ECIELD

p(y(i)|x(i); 9) — 757

1
V2o

* p(y®)x®; 9) indicates that this is the distribution of y given x and parameterized by 0
v' Since 8 is not a random variable, we should not condition on 6
v’ The probability of the data is given by p(y®]x®; 9)
v This quantity is typically viewed a function of y and x for a fixed value of 6
=» Change to a function of 6

= |ikelihood function

L(6) = L(6;X,5) = p(VIX; 6)
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. Probabilistic interpretation

= |ikelihood function

m
2@ =| [pr@1x®;0)
i=1

=1 (y® — oTx®)?
[ e (-5
l_IV2mo 20

» Maximum likelihood
v We should choose 0 so as to make the data as high probability as possible
v’ i.e., we should choose 0 to maximize L(0)
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. Probabilistic interpretation
= Log likelihood #(6)

2(0) = logL(0)

l ﬁ 1 < (y(i) _ QTx(i))2>
= lo ——exp |\ —
g L_V2mo P 202

m . N2
= z log . exp <_ (y(l) _ QTx(l)) )
V2o 2

: a?
=1

— @ _ gT,.(0)
mlog\/_ 2 ZZ(y 0'x )

= Maximizing £(6)

m
1 . .
minimizing EZ(y(l) - GTx(‘))Z
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Logistic Regression




. Classification Problem

» Binary classification
v’y can take on only two values, 0 and 1
v' y is called the label for the training example

= Logistic regression
v Hypotheses is called the logistic function or the sigmoid function

hg = g(0"x) = L
_ 1
9@ =T
d 1 1 ,
g (2) — dz(1+3_z) = (1 + e~2)2 (e7%)
_ 1 ) 1 - .
B (1+e72%) . ( B (1+ e—z)) =g(2)(1-g(2))
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. Classification Problem

= Given the logistic regression model, how do we fit 87

v With a set of probabilistic assumption
v’ Fit the parameters via maximum likelihood

v’ Let us assume that

p(y = 1|x;0) = hg(x)
p(y =0|x;0) =1 — hg(x)
v Then,

p(y|x;0) = (hg(x))¥ (1 — hg(x))*™Y
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. Classification Problem

= Assuming that the m training examples were generated independently
* Then, we can write down the likelihood of the parameters

L(6) =p(IX; )

m
= np(y(i)|x(i); 0)
=1

= [ [@ecorraa = hocy—
i=1
= As before, it will be easier to maximize the log likelihood

£(0) = logL(6)

= n(hg (X))Y (1 — hg(X)r™Y = Zy(i)logh(x(i)) + (1 —y®)log (1 — h(x(i)))
i=1 i=1
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. Classification Problem

» How do we maximize the likelihood? =» use gradient ascent
» Gradient ascent

0 =0+ aVyt(0)

= For one training example:

1 1 d
d—gji’(H) = (yg(ng) - (1-»7 _g(ng)> d@_g(HTx)

1 1
g YT g(HTx))g (0™0(1 - g(@Tx))— (67x)

= (y(1-g(0™0)) — (1 - y)g(8™x) ) x;
= (

— hy (x))x]
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. Classification Problem

» Stochastic gradient ascent
6, =06;+a (y(i) — hyg (x(i))) xj(i)

= We see that it looks identical; but this is not the same algorithm

= Because hy(xV) is now defined as a non-linear function of 67 x
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