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Discrete feature values

 Consider building an email spam filter using machine learning 

 We wish to classify messages according to whether they are unsolicited commercial 
(spam) email, or non-spam email  Automatically filter out

 Classifying emails is one example of a broader set of problems called classification 

 Training set 
 A set of emails labeled as spam or non-spam
We will begin our construction of our spam filter by specifying the features xi used to represent 

an email
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Training set

 We will represent an email via a feature vector whose length is equal to the number of 
words in the dictionary 

 If an email contains the i-th word of the dictionary, then we will set xi = 1; otherwise, we let 
xi = 0
 For instance, the vector is used to represent an email that contains the words ‘a’ and ‘buy’, but 

not ‘aardvark’, ‘aardwolf’, or ‘zygmurgy’
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Training set

 Having chosen our feature vector, we now want to build a generative model

 To model               , we will make a very strong assumption
We will assume that the xi’s are conditionally independent given y 
 This assumption is called the Naïve Bayes assumption 
 The resulting algorithm is called the Naïve Bayes classifier 

 If y = 1 means spam email; ‘buy’ is word 2087 and ‘price’ is word 39831; 
 Then we are assuming that if I tell you y = 1 (that a particular piece of email is spam),
 Then knowledge of x2087 (knowledge of whether ‘buy’ appears in the message) will have no 

effect on your beliefs about the value of x39831 (whether ‘price’ appears)

We are only assuming that x2087 and x39831 are conditionally independent given y
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Training set

 The first equality simply follows from the usual properties of probabilities

 The second equality used the Naïve Bayes assumption

 Even though the Naïve Bayes assumption is an extremely strong assumptions, the 
resulting algorithm works well on many problems
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Training model

 Our model is parameterized by 

 Given a training set 

 Write down the joint likelihood of the data

 Maximizing this with respect to                             gives the maximum likelihood estimates
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Training model

 The maximum likelihood estimates: 

 In the equations above, the ‘    ‘ symbol means ‘and’ 
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Training model

 Having fit all these parameters, to make a prediction on a new example with features x, 
we then simply calculate
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Training model

 The Naïve Bayes classifier finds the most possible state with the largest probability as the 
posterior probability for y
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Laplace smoothing

 The Naïve Bayes algorithm as we have described it will work fairly well for many problems, 
but there is a simple change that makes it work much better

 In case of work “nips”
We had not previously seen any emails containing the word “nips”
 “nips” did not ever appear in your training set of spam/non-spam emails
 Assuming that “nips” was the 35000th word in the dictionary
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Laplace smoothing

 Because it has never seen “nips” before in either spam or non-spam training examples, it 
thinks the probability of seeing it in either type of email is zero 

 Hence, when trying to decide if one of these messages containing “nips” is spam

 Our algorithm obtains 0/0, and doesn’t know how to make a prediction 
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Laplace smoothing

 To avoid this problem, we can use Laplace smoothing
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Example

 Input features: color, type, origin 

 We want to classify a Red Domestic SUV. Note there is no example of a Red Domestic 
SUV in our data set

No. Color Type Origin Stolen?

1 RED Sports Domestic YES

2 RED Sports Domestic NO

3 RED Sports Domestic YES

4 YELLOW Sports Domestic NO

5 YELLOW Sports Imported YES

6 YELLOW SUV Imported NO

7 YELLOW SUV Imported YES

8 YELLOW SUV Domestic NO

9 RED SUV Imported NO

10 RED Sports Imported YES
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Example

 Find the probabilities: 
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Example

 Since 0.070 > 0.036, the example gets classified as “No”
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