Recurrent Neural Network
(CS.231)




Sequence data

Sequential data includes text streams, audio clips, video clips, time-series data and etc.

Recurrent Neural Network

RNN maintains internal memory
RNN is very efficient for machine learning problems that involve sequential data
RNNs are also used in time series predictions

https://towardsdatascience.com/sequence-models-and-recurrent-neural-networks-rnns-62cadeb4flel
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Recurrent Networks offer a lot of flexibility:

one to one one to many many 1o one many to many many to many

— S o BEL . e . 1 e =

Vanilla Neural Networks Sentiment Classification Video classification
(seq. of words = sentiment) on frame level
Machine Translation

Image Captioning
(seq. of words = seq. of words)

(image = sequence of words)

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Recurrent Neural Network

usually want to
predict a vector at
some time steps

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

h’t — fW (‘ht—la mt)
new state /' old state input vector at t
some time step
some function -

with parameters W

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

ht = fW(ht—la :Bt)

Notice: the same function and the same set X
of parameters are used at every time step.

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—ls 33t)
|

ht p— t&ﬂh(Whhht_l - Wmhxt)

X Y — Whyht

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Character-level y
language model
example

Vocabulary:
[h,e,l,0]

Example training

sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Character-level
language model

example

Vocabulary:

[h,e,l,0]

Example training 3 0 0 0

sequence: input layer | 0 : : .

uhel IO!! 0 0 0 0
input chars:  “k” “g" i I

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Character-level
language model

hy = tanh(Whnhi—1 + Went)

example
Vocabulary: | 0.3 1.0 0.1 |w | -0.3
hidden layer | .01 ~ 0.3 ~ -0.5 —— 0.9
[h,e,l,0] 0.9 0.1 0.3 0.7
4 L

L T T W_xh

Example training 1 - 5 5
Seq uence. input layer g é ? ?
“hello” 0 0 0 0
input chars:  “h” ‘e" 1 T

Fei-Fei Li & Andrej Karpathy & Justin Johnson

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021




Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson

target chars: “&” K ap “g"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
output layer a0 by s .
41 1.2 -1.1 b B
4 4
T T | W_hy
0.3 1.0 0.1 03
hidden layer | .0.1 - 0.3 05 W_hh 0.9
0.9 0.1 03 0.7
[}
T T TW_xh
input layer 0 5 1 :
input chars: “p" ng? o -
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Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Recurrent Neural Network
straw” "“hat” END

Convolutional Neural Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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RNN: \
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RNN:
hi = tanh W' (h!i_l) R T )
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) output

R l?f"j)""| cell 1 | cell 2
‘+ Block | bisck hidden

input

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)
X sigmoid | — | i
h sigmoid | — | f
W 7 sigm
vector from sigmoid | —— | o f| _ |sigm W hi_l
before (h) 0 sigm hi_,
tanh | —— | g g tanh
[ { .
¢, =f@c_1+10g
4n 4*n " !
4n x 2n hi = 0 ® tanh(c!)

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]
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Long Short Term Memory (LSTM) 4 higher layer, or

[Hochreiter et al., 1997] prediction
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LSTM A

GRU — gated recurrent uni Le—— 1,
(more compression) I%
(o] [&mh] [0] iR

reset gate Update gate

[ |
x

it = 0 (Wz : [ht—lalﬁt])
rt =0 (Wr ' [ht—laﬂft])
he = tanh (W - [ry * hy_1, x4])

\_ ) ht:(lmzt)*ht_l'Jr'Zt*FLt

It combines the forget and input into a single update gate.
It also merges the cell state and hidden state. This is simpler
than LSTM. There are many other variants too.

https://cs.uwaterloo.ca/~mli
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LSTM and GRU

* LSTM [Hochreiter&Schmidhubera?] « GRU [Cho+14]
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GRUs also takes x, and h,, as inputs. They perform some
calculations and then pass along h,. What makes them different
from LSTMs is that GRUs don't need the cell layer to pass values
along. The calculations within each iteration insure that the h,
values being passed along either retain a high amount of old
information or are jump-started with a high amount of new
information.
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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