Deep Learning




| What is Deep Learning ?

= Artificial Intelligence
v Any technique that enables computers to mimic human behavior

= Machine Learning
v" Ability to learn without explicitly being programmed

» Deep Learning
v’ Extract patterns from data using neural networks
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Why Deep Learning and
Why Now ?




| Why Deep Learning ?

* Hand engineered features are time consuming, brittle, and not scalable in
practice

= Can we learn the underlying features directly data?
v Data-driven approach

» Features in Face Images
v Low level features: Lines, edges
v"Mid level features: Eyes, Nose, ears
v'High level features: Facial structure
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| Why Now ?

» Neural networks study
v'1952: Stochastic gradient descent
v'1958: Perceptron
v'1986: Backpropagation
v'1995: Deep Convolutional NN

* Neural networks date back decades, so why the resurgence?
v'Big Data
» Larger datasets, easier collection & storage
v'Hardware
» Graphics processing units (GPUs), massively parallelizable
v’ Software
» Improved techniques, new models, toolboxes
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The Perceptron
(The structural building block of deep learning)

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021



| The Perceptron: Forward Propagation

Linear combination of inputs
Output "
y=8 ( xiwij
i=1

Non-linear
Activation function

Inputs Weights Sum Non-linearity ~ Output
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| The Perceptron: Forward Propagation

. Linear combination of inputs
Bias
Output "
y=8 (Wo T xiwij
i=1

Non-linear
Activation function

Inputs Weights Sum Non-linearity ~ Output
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| The Perceptron: Forward Propagation

xl Wl
= ,W = .
_xm_ _Wm_

Inputs Weights Sum Non-linearity ~ Output
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| The Perceptron: Forward Propagation

Activation Function
p=g(w,+X'W)

Sigmoid Function

@ 8(2) = 0(2) = L
+e

Inputs Weights Sum Non-linearity ~ Output 0.5
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| Common Activation Functions

Sigmoid Function Hyperbolic Tangent (tanh) Rectified Linear Unit (ReLU)
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| Importance of Act

Non-linearity allows us to
approximate arbitrarily complex

Linear activation functions
produce linear decisions no matter
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the network size
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| The Perceptron: Example

y=g(0+3x,—2x,)
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| The Perceptron: Example
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| The Perceptron: Example
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z>0
y>0.5




Building Neural Networks
with Perceptrons




| The Perceptron: Simplified

Inputs Weights Sum Non-linearity ~ Output
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| The Perceptron: Simplified

@ =2 2 y=g(2)
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| Multi Outputs

= Because all inputs are densely connected to all outputs, these layers are
called Dense layers
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" Single Layer Neural Network

Inputs Hidden Output
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| Deep Neural Network

Inputs Hidden Output

1
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Applying Neural Networks




| Example

Pass the class

= Let's start with a simple two feature model
v'x, = # of lectures you attend
v'X, = Hours spent on the final project
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| Example

x5 = Hours 1
spent on the
final project 9 @
. | Legend
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x4 = Number of lectures you attend
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| Example

Prediction: 0.1

¥D=[4 3] ’ | Actual:1
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| Quantifying Loss

= The loss of our network measures the cost incurred from incorrect
predictions

Prediction: 0.1

L(f@:m). ")

Predicted Actual
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" Empirical Loss

» The empirical loss measures the total loss over our entire dataset

o4 st
ol oty

Objective function 1 <& l, l,
Cost function J(W)=;ZIL(f(x();W),y())
Empirical Risk -
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. Mean Squared Error Loss

= Mean squared error loss can be used with regression models that
output continuous real numbers

JW) = lzn:(y(i) _ f(x(i);W))z

n,.;

Actual Predicted
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" Binary Cross Entropy Loss

= Cross entropy loss can be used with models that output a probability
between 0 and 1

JW) = %iy“) log (f(x™;W))+ (1= y")log(1- f(x"; 1))

i=] — —_—

Actual Predicted Actual Predicted
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| Loss Optimization

= We want to find the network weights that achieve the lowest loss

W = argminlzn:L(f(x(i);W),y(i))

woo g

=argminJ (W)
w
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| Gradient Descent Algorithm

= Loss is a function of the network weights

» Gradient Descent

1. Initialize weights randomly ~ N(0,c”)

2. Loop until convergence:
oJ (W)

3. Compute gradient,

oJ (W)
oW

4. Update weights, W < W —n

5. Return weights
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| Computing Gradients: Backpropagation

N NN
(<) ) P, JW)

oJW) oJ(W) y oy
ow, oy  ow,

Chain rule
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| Computing Gradients: Backpropagation

N NN
(<) ) P, JW)

oJW) oJW) y oy y Oz,
ow, oy 0z, Ow,

Repeat this for every weight in the network in the network using gradients from later layers
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Neural Networks in Practice:
Optimization




1 Loss functions can be difficult to optimize

= Optimization through gradient descent

Wy &)
ow

Learning rate
- How can we set ?

v"Small learning rates converge slowly and gets stuck in false local minima
v'Large learning rates overshoot, become unstable and diverge
v'Stable learning rates converge smoothly and avoid local minima
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| Adaptive Learning Rates

» Learning rates are no longer fixed

= Can be made larger or smaller depending on:
v'How large gradient is
v'How fast learning is happening

v’ Size of particular weights
v Etc.
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| Optimizer - Adaptive Learning Rates

= Algorithm
v SGD
v'Adam
v Adadelta
v'Adagrad

v RMSProp
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Neural Networks in Practice:
Mini-batches




" Gradient Descent

= Loss is a function of the network weights

» Gradient Descent

1. Initialize weights randomly ~ N(0,c”)
2. Loop until convergence:

0J(W) Can be very computationally
intensive to compute

oJ (W)
oW

3. Compute gradient,

4. Update weights, W < W —n

5. Return weights
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| Stochastic Gradient Descent

» Stochastic Gradient Descent

1. Initialize weights randomly ~ N(0,c?)
2. Loop until convergence:

3.  Pick single data point ;

, oJ (W)  Easy to compute but very noisy
4. Compute gradient, ——= (stochastic)

o, ()

5. Update weights, W <« W —
p g n Py

6. Return weights
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| Stochastic Gradient Descent

» Stochastic Gradient Descent

1. Initialize weights randomly ~ N(0,c?)
2. Loop until convergence:

3. Pick batch of B data points
Fast to compute and a much

o/w) _ 1 ZB 0, (W) petter estimate of the true
ow B~ ow gradient

o, ()
ow

4.  Compute gradient,

5. Update weights, W < W —n

6. Return weights
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Neural Networks in Practice:
Overfitting




| The problem of overfitting

Underfitting Ideal Overfitting

» Underfitting — Model does not have capacity to fully learn the data
= Overfitting — Too complex, extra parameters, does not generalize well
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" Regularization

= Technique that constrains our optimization problem to discourage
complex models

* Improve generalization of our model on unseen data
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" Regularization - Dropout

= During training, randomly set some activations to 0
v Typically ‘drop 50%" of activations in layer
v'Forces network to not rely on any i node
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" Regularization - Dropout

= During training, randomly set some activations to 0
v Typically ‘drop 50%" of activations in layer
v'Forces network to not rely on any i node

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021




" Regularization - Early Stopping

= Stop training before we have a chance to overfit

Loss

Underfitting Overfitting

Stop training
here!

/

Training fterations
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Testing

Training
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END
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