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What is Deep Learning ?

 Artificial Intelligence
Any technique that enables computers to mimic human behavior

 Machine Learning
Ability to learn without explicitly being programmed

 Deep Learning
Extract patterns from data using neural networks
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Why Deep Learning and 
Why Now ?
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Why Deep Learning ?

 Hand engineered features are time consuming, brittle, and not scalable in 
practice

 Can we learn the underlying features directly data?
Data-driven approach

 Features in Face Images
Low level features: Lines, edges
Mid level features: Eyes, Nose, ears 
High level features: Facial structure
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Why Now ?

 Neural networks study 
1952: Stochastic gradient descent
1958: Perceptron
1986: Backpropagation
1995: Deep Convolutional NN

 Neural networks date back decades, so why the resurgence?
Big Data

Larger datasets, easier collection & storage
Hardware

Graphics processing units (GPUs), massively parallelizable
Software

 Improved techniques, new models, toolboxes
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The Perceptron
(The structural building block of deep learning)
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent (tanh) Rectified Linear Unit (ReLU)
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Importance of Activation Functions

Linear activation functions 
produce linear decisions no matter 

the network size

Non-linearity allows us to 
approximate arbitrarily complex 

functions
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The Perceptron: Example
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The Perceptron: Example

1

x1

x2

∑ ŷ

1

3

-2

1 2ˆ (1 3 2 )y g x x  

1 21 3 2 0x x  



INTELLIGENT NETWORKING & SYSTEM LAB. 14

The Perceptron: Example
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Building Neural Networks 
with Perceptrons
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The Perceptron: Simplified
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The Perceptron: Simplified
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Multi Outputs

 Because all inputs are densely connected to all outputs, these layers are 
called Dense layers
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Single Layer Neural Network
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Deep Neural Network
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Applying Neural Networks
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Example

 Let’s start with a simple two feature model 
x1 = # of lectures you attend
x2 = Hours spent on the final project

Pass the class
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Example
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Example
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Quantifying Loss

 The loss of our network measures the cost incurred from incorrect 
predictions
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Empirical Loss

 The empirical loss measures the total loss over our entire dataset
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Mean Squared Error Loss

 Mean squared error loss can be used with regression models that 
output continuous real numbers
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Binary Cross Entropy Loss

 Cross entropy loss can be used with models that output a probability 
between 0 and 1

   ( ) ( ) ( ) ( )

1

1
( ) log ( ; ) (1 ) log 1 ( ; )

n
i i i i

i

J W y f x W y f x W
n 

   
PredictedActual PredictedActual



INTELLIGENT NETWORKING & SYSTEM LAB. 29

Loss Optimization

 We want to find the network weights that achieve the lowest loss
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Gradient Descent Algorithm

 Loss is a function of the network weights

 Gradient Descent
21. Initialize weights randomly ~ (0, )

2. Loop until convergence:
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Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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Repeat this for every weight in the network in the network using gradients from later layers
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Neural Networks in Practice:
Optimization
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Loss functions can be difficult to optimize

 Optimization through gradient descent

Small learning rates converge slowly and gets stuck in false local minima
Large learning rates overshoot, become unstable and diverge
Stable learning rates converge smoothly and avoid local minima
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Adaptive Learning Rates

 Learning rates are no longer fixed

 Can be made larger or smaller depending on:
How large gradient is
How fast learning is happening
Size of particular weights
Etc.



INTELLIGENT NETWORKING & SYSTEM LAB. 36

Optimizer - Adaptive Learning Rates

 Algorithm 

SGD

Adam

Adadelta

Adagrad

RMSProp
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Neural Networks in Practice:
Mini-batches
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Gradient Descent

 Loss is a function of the network weights

 Gradient Descent
21. Initialize weights randomly ~ (0, )

2. Loop until convergence:
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Stochastic Gradient Descent

 Stochastic Gradient Descent

21. Initialize weights randomly ~ (0, )

2. Loop until convergence:
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Stochastic Gradient Descent

 Stochastic Gradient Descent
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gradient
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Neural Networks in Practice:
Overfitting
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The problem of overfitting

 Underfitting – Model does not have capacity to fully learn the data
 Overfitting – Too complex, extra parameters, does not generalize well

Underfitting OverfittingIdeal
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Regularization

 Technique that constrains our optimization problem to discourage 
complex models

 Improve generalization of our model on unseen data 
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Regularization – Dropout 

 During training, randomly set some activations to 0
Typically ‘drop 50%’ of activations in layer
Forces network to not rely on any i node 
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Regularization – Dropout 

 During training, randomly set some activations to 0
Typically ‘drop 50%’ of activations in layer
Forces network to not rely on any i node 
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Regularization – Early Stopping

 Stop training before we have a chance to overfit
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END


