Deep Learning

| What is Deep Learning ?

= Artificial Intelligence
v Any technique that enables computers to mimic human behavior

= Machine Learning
v" Ability to learn without explicitly being programmed

» Deep Learning
v’ Extract patterns from data using neural networks

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

Why Deep Learning and
Why Now ?

| Why Deep Learning ?

* Hand engineered features are time consuming, brittle, and not scalable in
practice

= Can we learn the underlying features directly data?
v Data-driven approach

» Features in Face Images
v Low level features: Lines, edges
v"Mid level features: Eyes, Nose, ears
v'High level features: Facial structure

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Why Now ?

» Neural networks study
v'1952: Stochastic gradient descent
v'1958: Perceptron
v'1986: Backpropagation
v'1995: Deep Convolutional NN

* Neural networks date back decades, so why the resurgence?
v'Big Data
» Larger datasets, easier collection & storage
v'Hardware
» Graphics processing units (GPUs), massively parallelizable
v’ Software
» Improved techniques, new models, toolboxes

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

The Perceptron
(The structural building block of deep learning)

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Forward Propagation

Linear combination of inputs
Output "
y=8 (xiwij
i=1

Non-linear
Activation function

Inputs Weights Sum Non-linearity ~ Output

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Forward Propagation

. Linear combination of inputs
Bias
Output "
y=8 (Wo T xiwij
i=1

Non-linear
Activation function

Inputs Weights Sum Non-linearity ~ Output

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Forward Propagation

xl Wl
= ,W = .
xm _Wm_

Inputs Weights Sum Non-linearity ~ Output

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Forward Propagation

Activation Function
p=g(w,+X'W)

Sigmoid Function

@ 8(2) = 0(2) = L
+e

Inputs Weights Sum Non-linearity ~ Output 0.5

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Common Activation Functions

Sigmoid Function Hyperbolic Tangent (tanh) Rectified Linear Unit (ReLU)
g(z)=0(z) = ! — g(z)=0(z) = e_z — e_z g(z) = max(0, z)
1 l+e 1 82 +e o L 70
' = — ' =\]|— ' Z) =
g'(z)=g(2)1-g(2) g(z)=1-g(2) g 0. otherwise
K'/K--- 0:5:
ff
G I';;,' —4 2 2 4
/f 5
o s 2 0 2 4 e : :

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

ions

Funct

ivation

| Importance of Act

Non-linearity allows us to
approximate arbitrarily complex

Linear activation functions
produce linear decisions no matter

functions

the network size

N
[=]
(g}
©
od
<
—|
=
(18
==
(%2
>
(%]
%
O
=
—=
-4
(©)
=
-
e
Z
[
Z
Ll
)
=
=l
(18}
-
=

| The Perceptron: Example

y=g(0+3x,—2x,)

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Example

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Example

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

z>0
y>0.5

Building Neural Networks
with Perceptrons

| The Perceptron: Simplified

Inputs Weights Sum Non-linearity ~ Output

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| The Perceptron: Simplified

@ =2 2 y=g(2)

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Multi Outputs

= Because all inputs are densely connected to all outputs, these layers are
called Dense layers

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Single Layer Neural Network

Inputs Hidden Output

IGENT NETWORKING & SYSTEM LAB. © 2021

| Deep Neural Network

Inputs Hidden Output

1

— 1K) (k)

Zr g =W T Z g(Zk—l,j)Wj,i
=

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

Applying Neural Networks

| Example

Pass the class

= Let's start with a simple two feature model
v'x, = # of lectures you attend
v'X, = Hours spent on the final project

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Example

x5 = Hours 1
spent on the
final project 9 @
. | Legend
. . Pass
® i
@
@
® o
@
2
B

x4 = Number of lectures you attend

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Example

Prediction: 0.1

¥D=[4 3] ’ | Actual:1

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Quantifying Loss

= The loss of our network measures the cost incurred from incorrect
predictions

Prediction: 0.1

L(f@:m). ")

Predicted Actual

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Empirical Loss

» The empirical loss measures the total loss over our entire dataset

o4 st
ol oty

Objective function 1 <& l, l,
Cost function J(W)=;ZIL(f(x();W),y())
Empirical Risk -

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

. Mean Squared Error Loss

= Mean squared error loss can be used with regression models that
output continuous real numbers

JW) = lzn:(y(i) _ f(x(i);W))z

n,.;

Actual Predicted

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Binary Cross Entropy Loss

= Cross entropy loss can be used with models that output a probability
between 0 and 1

JW) = %iy“) log (f(x™;W))+ (1= y")log(1- f(x"; 1))

i=] — —_—

Actual Predicted Actual Predicted

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Loss Optimization

= We want to find the network weights that achieve the lowest loss

W = argminlzn:L(f(x(i);W),y(i))

woo g

=argminJ (W)
w

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Gradient Descent Algorithm

= Loss is a function of the network weights

» Gradient Descent

1. Initialize weights randomly ~ N(0,c”)

2. Loop until convergence:
oJ (W)

3. Compute gradient,

oJ (W)
oW

4. Update weights, W < W —n

5. Return weights

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Computing Gradients: Backpropagation

N NN
(<)) P, JW)

oJW) oJ(W) y oy
ow, oy ow,

Chain rule

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Computing Gradients: Backpropagation

N NN
(<)) P, JW)

oJW) oJW) y oy y Oz,
ow, oy 0z, Ow,

Repeat this for every weight in the network in the network using gradients from later layers

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

Neural Networks in Practice:
Optimization

1 Loss functions can be difficult to optimize

= Optimization through gradient descent

Wy &)
ow

Learning rate
- How can we set ?

v"Small learning rates converge slowly and gets stuck in false local minima
v'Large learning rates overshoot, become unstable and diverge
v'Stable learning rates converge smoothly and avoid local minima

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Adaptive Learning Rates

» Learning rates are no longer fixed

= Can be made larger or smaller depending on:
v'How large gradient is
v'How fast learning is happening

v’ Size of particular weights
v Etc.

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Optimizer - Adaptive Learning Rates

= Algorithm
v SGD
v'Adam
v Adadelta
v'Adagrad

v RMSProp

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

Neural Networks in Practice:
Mini-batches

" Gradient Descent

= Loss is a function of the network weights

» Gradient Descent

1. Initialize weights randomly ~ N(0,c”)
2. Loop until convergence:

0J(W) Can be very computationally
intensive to compute

oJ (W)
oW

3. Compute gradient,

4. Update weights, W < W —n

5. Return weights

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Stochastic Gradient Descent

» Stochastic Gradient Descent

1. Initialize weights randomly ~ N(0,c?)
2. Loop until convergence:

3. Pick single data point ;

, oJ (W) Easy to compute but very noisy
4. Compute gradient, ——= (stochastic)

o, ()

5. Update weights, W <« W —
p g n Py

6. Return weights

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

| Stochastic Gradient Descent

» Stochastic Gradient Descent

1. Initialize weights randomly ~ N(0,c?)
2. Loop until convergence:

3. Pick batch of B data points
Fast to compute and a much

o/w) _ 1 ZB 0, (W) petter estimate of the true
ow B~ ow gradient

o, ()
ow

4. Compute gradient,

5. Update weights, W < W —n

6. Return weights

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

Neural Networks in Practice:
Overfitting

| The problem of overfitting

Underfitting Ideal Overfitting

» Underfitting — Model does not have capacity to fully learn the data
= Overfitting — Too complex, extra parameters, does not generalize well

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Regularization

= Technique that constrains our optimization problem to discourage
complex models

* Improve generalization of our model on unseen data

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Regularization - Dropout

= During training, randomly set some activations to 0
v Typically ‘drop 50%" of activations in layer
v'Forces network to not rely on any i node

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Regularization - Dropout

= During training, randomly set some activations to 0
v Typically ‘drop 50%" of activations in layer
v'Forces network to not rely on any i node

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

" Regularization - Early Stopping

= Stop training before we have a chance to overfit

Loss

Underfitting Overfitting

Stop training
here!

/

Training fterations

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

Legend

Testing

Training

—@- e,

END

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

