
INTELLIGENT NETWORKING & SYSTEM LAB.

Deep Learning

INTELLIGENT NETWORKING & SYSTEM LAB. 1

What is Deep Learning ?

 Artificial Intelligence
Any technique that enables computers to mimic human behavior

 Machine Learning
Ability to learn without explicitly being programmed

 Deep Learning
Extract patterns from data using neural networks

INTELLIGENT NETWORKING & SYSTEM LAB.

Why Deep Learning and
Why Now ?

INTELLIGENT NETWORKING & SYSTEM LAB. 3

Why Deep Learning ?

 Hand engineered features are time consuming, brittle, and not scalable in
practice

 Can we learn the underlying features directly data?
Data-driven approach

 Features in Face Images
Low level features: Lines, edges
Mid level features: Eyes, Nose, ears
High level features: Facial structure

INTELLIGENT NETWORKING & SYSTEM LAB. 4

Why Now ?

 Neural networks study
1952: Stochastic gradient descent
1958: Perceptron
1986: Backpropagation
1995: Deep Convolutional NN

 Neural networks date back decades, so why the resurgence?
Big Data

Larger datasets, easier collection & storage
Hardware

Graphics processing units (GPUs), massively parallelizable
Software

 Improved techniques, new models, toolboxes

INTELLIGENT NETWORKING & SYSTEM LAB.

The Perceptron
(The structural building block of deep learning)

INTELLIGENT NETWORKING & SYSTEM LAB. 6

The Perceptron: Forward Propagation

x1

x2

x3

∑ ŷ

Inputs

w1

w2

w3

Weights Sum Non-linearity Output

1

ˆ
m

i i
i

y g x w


   
 


Output

Linear combination of inputs

Non-linear
Activation function

INTELLIGENT NETWORKING & SYSTEM LAB. 7

The Perceptron: Forward Propagation

0
1

ˆ
m

i i
i

y g w x w


 
  

 


Output

Linear combination of inputs

Non-linear
Activation function

Bias
x1

x2

x3

∑ ŷ

Inputs

w1

w2

w3

Weights Sum Non-linearity Output

1
w0

INTELLIGENT NETWORKING & SYSTEM LAB. 8

The Perceptron: Forward Propagation

 

0
1

1 1

0

ˆ

ˆ , ,

m

i i
i

T

m m

y g w x w

x w

y g w X W X W

x w



 
  

 
   
         
      



 

x1

x2

x3

∑ ŷ

Inputs

w1

w2

w3

Weights Sum Non-linearity Output

1
w0

INTELLIGENT NETWORKING & SYSTEM LAB. 9

The Perceptron: Forward Propagation

 0ˆ Ty g w X W 

x1

x2

x3

∑ ŷ

Inputs

w1

w2

w3

Weights Sum Non-linearity Output

1
w0

Activation Function

Sigmoid Function
1

() ()
1 z

g z z
e

  


INTELLIGENT NETWORKING & SYSTEM LAB. 10

Common Activation Functions

Sigmoid Function Hyperbolic Tangent (tanh) Rectified Linear Unit (ReLU)

1
() ()

1
'() ()(1 ())

z
g z z

e
g z g z g z

  


  2

() ()

'() 1 ()

z z

z z

e e
g z z

e e

g z g z


 

 


 


 

() max(0,)

1, z>0
'()

0,

g z z

g z
otherwise




 


INTELLIGENT NETWORKING & SYSTEM LAB. 11

Importance of Activation Functions

Linear activation functions
produce linear decisions no matter

the network size

Non-linearity allows us to
approximate arbitrarily complex

functions

INTELLIGENT NETWORKING & SYSTEM LAB. 12

The Perceptron: Example

1

x1

x2

∑ ŷ

1

3

-2

 
0

0

1

2

1 2

3
1,

2

ˆ

3
 1

2

ˆ (1 3 2)

T

T

w W

y g w X W

x
g

x

y g x x

 
    

 

    
          

  

INTELLIGENT NETWORKING & SYSTEM LAB. 13

The Perceptron: Example

1

x1

x2

∑ ŷ

1

3

-2

1 2ˆ (1 3 2)y g x x  

1 21 3 2 0x x  

INTELLIGENT NETWORKING & SYSTEM LAB. 14

The Perceptron: Example

1

x1

x2

∑ ŷ

1

3

-2

1 2ˆ (1 3 2)y g x x  

1 21 3 2 0x x  
0

0.5

z

y




0

0.5

z

y




INTELLIGENT NETWORKING & SYSTEM LAB.

Building Neural Networks
with Perceptrons

INTELLIGENT NETWORKING & SYSTEM LAB. 16

The Perceptron: Simplified

x1

x2

x3

∑ ŷ

Inputs

w1

w2

w3

Weights Sum Non-linearity Output

1
w0

 0ˆ Ty g w X W 

INTELLIGENT NETWORKING & SYSTEM LAB. 17

The Perceptron: Simplified

x1

x2

xm

z

w1

w2

wm

()y g z

0
1

m

j j
j

z w x w


 

INTELLIGENT NETWORKING & SYSTEM LAB. 18

Multi Outputs

 Because all inputs are densely connected to all outputs, these layers are
called Dense layers

x1

x2

xm

z1

z2

1 1()y g z

2 2()y g z

0, ,
1

m

i i j j i
j

z w x w


 

INTELLIGENT NETWORKING & SYSTEM LAB. 19

Single Layer Neural Network

x1

x2

xm

z1

z2

z3

zd

ŷ1

ŷ2

Inputs Hidden Output

0,

(1) (1)
,

1
i

m

i j j i
j

z w x w


   
0,

(2) (2)
,

1

ˆ
i

d

i j j i
j

y g w g z w


 
  

 


W(1) W(2)

INTELLIGENT NETWORKING & SYSTEM LAB. 20

Deep Neural Network

x1

x2

xm

z1

z2

z3

zd

ŷ1

ŷ2

    

Inputs Hidden Output

1

0,

() ()
, 1, ,

1

()
k

i

n
k k

k i k j j i
j

z w g z w





 

INTELLIGENT NETWORKING & SYSTEM LAB.

Applying Neural Networks

INTELLIGENT NETWORKING & SYSTEM LAB. 22

Example

 Let’s start with a simple two feature model
x1 = # of lectures you attend
x2 = Hours spent on the final project

Pass the class

INTELLIGENT NETWORKING & SYSTEM LAB. 23

Example

INTELLIGENT NETWORKING & SYSTEM LAB. 24

Example

x1

x2

z1

z2

z3

ŷ1x(1)=[4 5]
Prediction: 0.1
Actual:1

INTELLIGENT NETWORKING & SYSTEM LAB. 25

Quantifying Loss

 The loss of our network measures the cost incurred from incorrect
predictions

x1

x2

z1

z2

z3

ŷ1x(1)=[4 5]
Prediction: 0.1
Actual:1

 () ()(;),i iL f x W y

Predicted Actual

INTELLIGENT NETWORKING & SYSTEM LAB. 26

Empirical Loss

 The empirical loss measures the total loss over our entire dataset

x1

x2

z1

z2

z3

ŷ1x=[x1 x2]
Prediction: f(x)
Actual: y

 () ()

1

1
() (;),

n
i i

i

J W L f x W y
n 

 
Objective function
Cost function
Empirical Risk

INTELLIGENT NETWORKING & SYSTEM LAB. 27

Mean Squared Error Loss

 Mean squared error loss can be used with regression models that
output continuous real numbers

 2() ()

1

1
() (;)

n
i i

i

J W y f x W
n 

 
PredictedActual

INTELLIGENT NETWORKING & SYSTEM LAB. 28

Binary Cross Entropy Loss

 Cross entropy loss can be used with models that output a probability
between 0 and 1

   () () () ()

1

1
() log (;) (1) log 1 (;)

n
i i i i

i

J W y f x W y f x W
n 

   
PredictedActual PredictedActual

INTELLIGENT NETWORKING & SYSTEM LAB. 29

Loss Optimization

 We want to find the network weights that achieve the lowest loss

  * () ()

1

1
arg min ; ,

 arg min ()

n
i i

W i

W

W L f x W y
n

J W








INTELLIGENT NETWORKING & SYSTEM LAB. 30

Gradient Descent Algorithm

 Loss is a function of the network weights

 Gradient Descent
21. Initialize weights randomly ~ (0,)

2. Loop until convergence:

()
3. Compute gradient,

()
4. Update weights,

5. Return weights

N

J W

W
J W

W W
W









 



INTELLIGENT NETWORKING & SYSTEM LAB. 31

Computing Gradients: Backpropagation

x z1 ŷ
w1 w2

J(W)

2 2

ˆ() ()
ˆ

J W J W y

w y w

  
 

  
Chain rule

INTELLIGENT NETWORKING & SYSTEM LAB. 32

Computing Gradients: Backpropagation

x z1 ŷ
w1 w2

J(W)

1

1 1 1

ˆ() ()
ˆ

zJ W J W y

w y z w

  
  

   

Repeat this for every weight in the network in the network using gradients from later layers

INTELLIGENT NETWORKING & SYSTEM LAB.

Neural Networks in Practice:
Optimization

INTELLIGENT NETWORKING & SYSTEM LAB. 34

Loss functions can be difficult to optimize

 Optimization through gradient descent

Small learning rates converge slowly and gets stuck in false local minima
Large learning rates overshoot, become unstable and diverge
Stable learning rates converge smoothly and avoid local minima

()J W
W W

W
 

 


Learning rate
- How can we set ?

INTELLIGENT NETWORKING & SYSTEM LAB. 35

Adaptive Learning Rates

 Learning rates are no longer fixed

 Can be made larger or smaller depending on:
How large gradient is
How fast learning is happening
Size of particular weights
Etc.

INTELLIGENT NETWORKING & SYSTEM LAB. 36

Optimizer - Adaptive Learning Rates

 Algorithm

SGD

Adam

Adadelta

Adagrad

RMSProp

INTELLIGENT NETWORKING & SYSTEM LAB.

Neural Networks in Practice:
Mini-batches

INTELLIGENT NETWORKING & SYSTEM LAB. 38

Gradient Descent

 Loss is a function of the network weights

 Gradient Descent
21. Initialize weights randomly ~ (0,)

2. Loop until convergence:

()
3. Compute gradient,

()
4. Update weights,

5. Return weights

N

J W

W
J W

W W
W









 



Can be very computationally
intensive to compute

INTELLIGENT NETWORKING & SYSTEM LAB. 39

Stochastic Gradient Descent

 Stochastic Gradient Descent

21. Initialize weights randomly ~ (0,)

2. Loop until convergence:

3. Pick single data point

()
4. Compute gradient,

()
5. Update weights,

6. Return weights

i

i

N

i

J W

W
J W

W W
W









 



Easy to compute but very noisy
(stochastic)

INTELLIGENT NETWORKING & SYSTEM LAB. 40

Stochastic Gradient Descent

 Stochastic Gradient Descent

2

1

1. Initialize weights randomly ~ (0,)

2. Loop until convergence:

3. Pick batch of B data points

()() 1
4. Compute gradient,

()
5. Update weights,

6. Return weights

B k
k

i

N

J WJ W

W B W
J W

W W
W










 


 



Fast to compute and a much
Better estimate of the true
gradient

INTELLIGENT NETWORKING & SYSTEM LAB.

Neural Networks in Practice:
Overfitting

INTELLIGENT NETWORKING & SYSTEM LAB. 42

The problem of overfitting

 Underfitting – Model does not have capacity to fully learn the data
 Overfitting – Too complex, extra parameters, does not generalize well

Underfitting OverfittingIdeal

INTELLIGENT NETWORKING & SYSTEM LAB. 43

Regularization

 Technique that constrains our optimization problem to discourage
complex models

 Improve generalization of our model on unseen data

INTELLIGENT NETWORKING & SYSTEM LAB. 44

Regularization – Dropout

 During training, randomly set some activations to 0
Typically ‘drop 50%’ of activations in layer
Forces network to not rely on any i node

x1

z11

ŷ1

x2

x3

z12

z13

z14

z21

z22

z23

z24

ŷ2

INTELLIGENT NETWORKING & SYSTEM LAB. 45

Regularization – Dropout

 During training, randomly set some activations to 0
Typically ‘drop 50%’ of activations in layer
Forces network to not rely on any i node

x1

z11

ŷ1

x2

x3

z12

z13

z14

z21

z22

z23

z24

ŷ2

INTELLIGENT NETWORKING & SYSTEM LAB. 46

Regularization – Early Stopping

 Stop training before we have a chance to overfit

INTELLIGENT NETWORKING & SYSTEM LAB.

END

