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What is Deep Learning ?

 Artificial Intelligence
Any technique that enables computers to mimic human behavior

 Machine Learning
Ability to learn without explicitly being programmed

 Deep Learning
Extract patterns from data using neural networks
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Why Deep Learning and 
Why Now ?
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Why Deep Learning ?

 Hand engineered features are time consuming, brittle, and not scalable in 
practice

 Can we learn the underlying features directly data?
Data-driven approach

 Features in Face Images
Low level features: Lines, edges
Mid level features: Eyes, Nose, ears 
High level features: Facial structure
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Why Now ?

 Neural networks study 
1952: Stochastic gradient descent
1958: Perceptron
1986: Backpropagation
1995: Deep Convolutional NN

 Neural networks date back decades, so why the resurgence?
Big Data

Larger datasets, easier collection & storage
Hardware

Graphics processing units (GPUs), massively parallelizable
Software

 Improved techniques, new models, toolboxes
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The Perceptron
(The structural building block of deep learning)
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent (tanh) Rectified Linear Unit (ReLU)
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Importance of Activation Functions

Linear activation functions 
produce linear decisions no matter 

the network size

Non-linearity allows us to 
approximate arbitrarily complex 

functions
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The Perceptron: Example
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The Perceptron: Example
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The Perceptron: Example
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Building Neural Networks 
with Perceptrons
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The Perceptron: Simplified
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The Perceptron: Simplified
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Multi Outputs

 Because all inputs are densely connected to all outputs, these layers are 
called Dense layers
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Single Layer Neural Network
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Deep Neural Network
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Applying Neural Networks
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Example

 Let’s start with a simple two feature model 
x1 = # of lectures you attend
x2 = Hours spent on the final project

Pass the class
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Example
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Example
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Quantifying Loss

 The loss of our network measures the cost incurred from incorrect 
predictions
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Empirical Loss

 The empirical loss measures the total loss over our entire dataset
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Mean Squared Error Loss

 Mean squared error loss can be used with regression models that 
output continuous real numbers
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Binary Cross Entropy Loss

 Cross entropy loss can be used with models that output a probability 
between 0 and 1

   ( ) ( ) ( ) ( )

1

1
( ) log ( ; ) (1 ) log 1 ( ; )

n
i i i i

i

J W y f x W y f x W
n 

   
PredictedActual PredictedActual



INTELLIGENT NETWORKING & SYSTEM LAB. 29

Loss Optimization

 We want to find the network weights that achieve the lowest loss
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Gradient Descent Algorithm

 Loss is a function of the network weights

 Gradient Descent
21. Initialize weights randomly ~ (0, )

2. Loop until convergence:
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Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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Repeat this for every weight in the network in the network using gradients from later layers
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Neural Networks in Practice:
Optimization
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Loss functions can be difficult to optimize

 Optimization through gradient descent

Small learning rates converge slowly and gets stuck in false local minima
Large learning rates overshoot, become unstable and diverge
Stable learning rates converge smoothly and avoid local minima
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Adaptive Learning Rates

 Learning rates are no longer fixed

 Can be made larger or smaller depending on:
How large gradient is
How fast learning is happening
Size of particular weights
Etc.
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Optimizer - Adaptive Learning Rates

 Algorithm 

SGD

Adam

Adadelta

Adagrad

RMSProp
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Neural Networks in Practice:
Mini-batches
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Gradient Descent

 Loss is a function of the network weights

 Gradient Descent
21. Initialize weights randomly ~ (0, )

2. Loop until convergence:

( )
3.     Compute gradient, 

( )
4.     Update weights, 

5. Return weights
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Stochastic Gradient Descent

 Stochastic Gradient Descent

21. Initialize weights randomly ~ (0, )

2. Loop until convergence:

3.     Pick single data point 
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Stochastic Gradient Descent

 Stochastic Gradient Descent
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Neural Networks in Practice:
Overfitting
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The problem of overfitting

 Underfitting – Model does not have capacity to fully learn the data
 Overfitting – Too complex, extra parameters, does not generalize well

Underfitting OverfittingIdeal
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Regularization

 Technique that constrains our optimization problem to discourage 
complex models

 Improve generalization of our model on unseen data 
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Regularization – Dropout 

 During training, randomly set some activations to 0
Typically ‘drop 50%’ of activations in layer
Forces network to not rely on any i node 
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Regularization – Dropout 

 During training, randomly set some activations to 0
Typically ‘drop 50%’ of activations in layer
Forces network to not rely on any i node 
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Regularization – Early Stopping

 Stop training before we have a chance to overfit
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END


