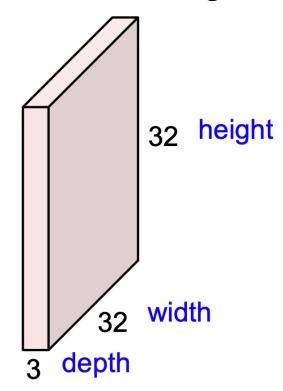
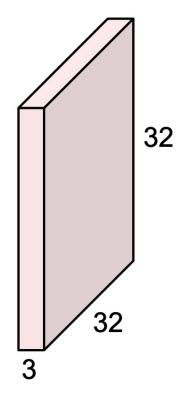
Convolutional Neural Network (CS.231)

32x32x3 image -> preserve spatial structure

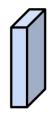


32x32x3 image

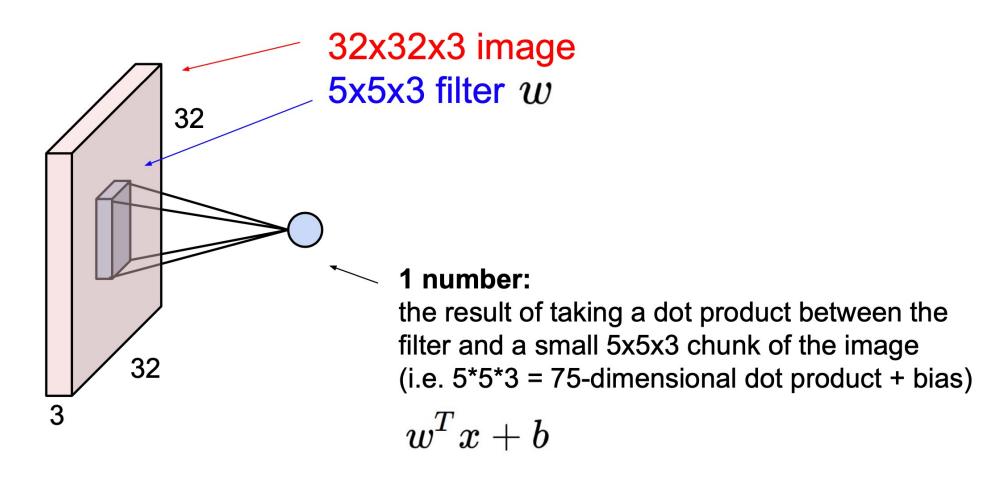


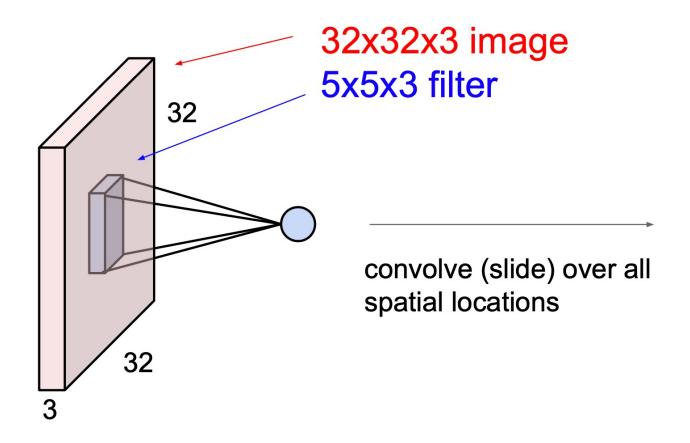
Filters always extend the full depth of the input volume

5x5x3 filter

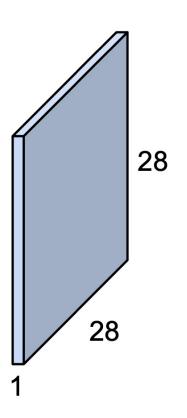


Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

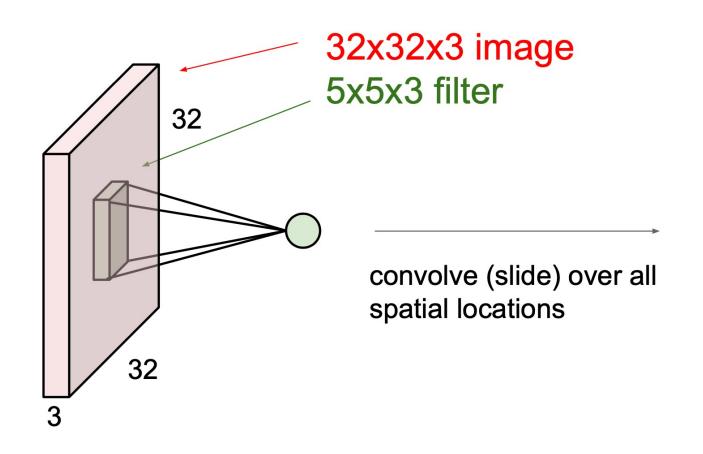




activation map

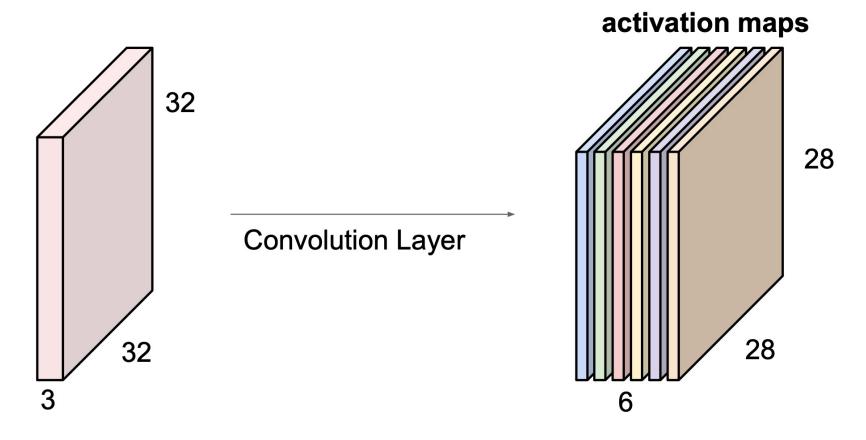


consider a second, green filter



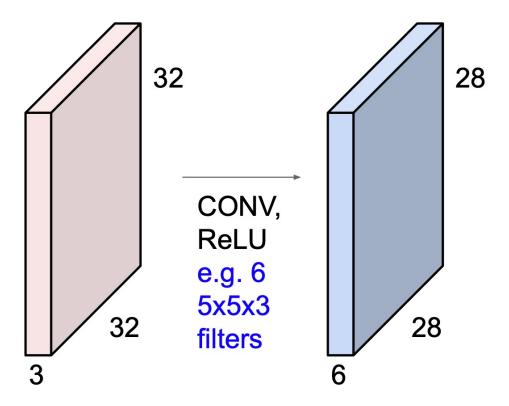


For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

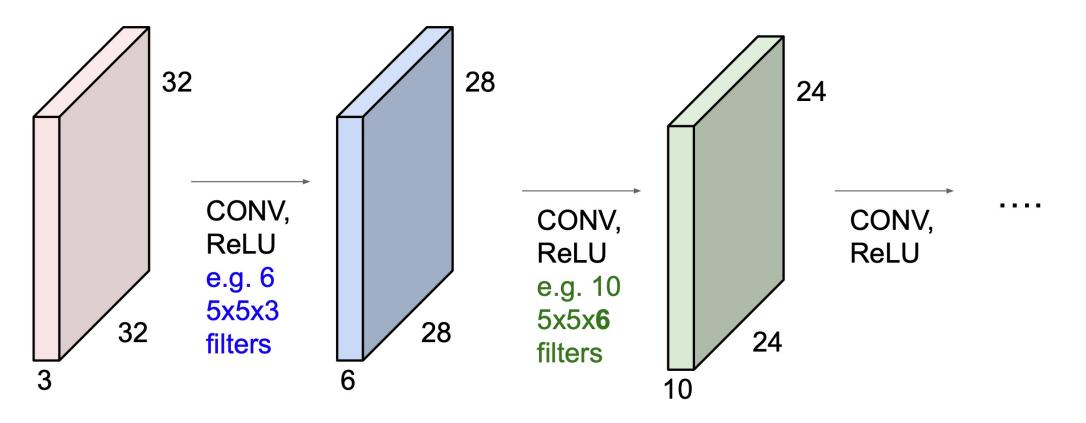


We stack these up to get a "new image" of size 28x28x6!

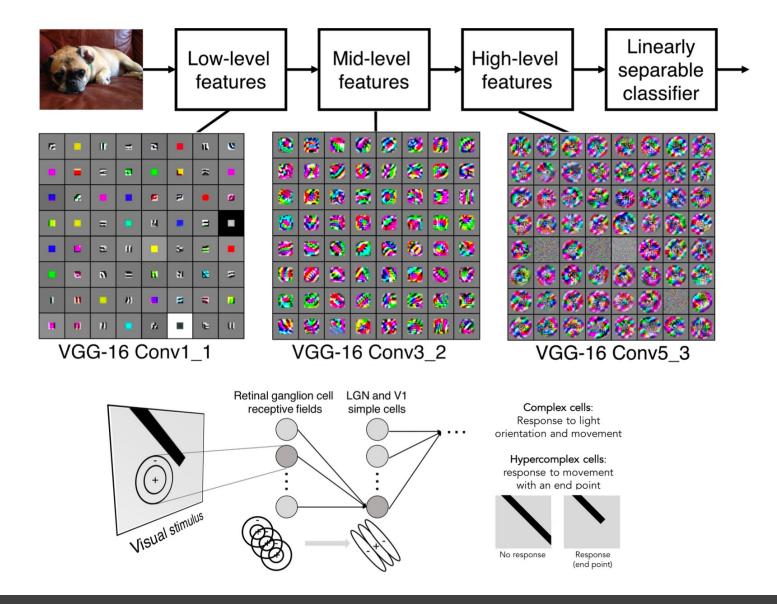
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

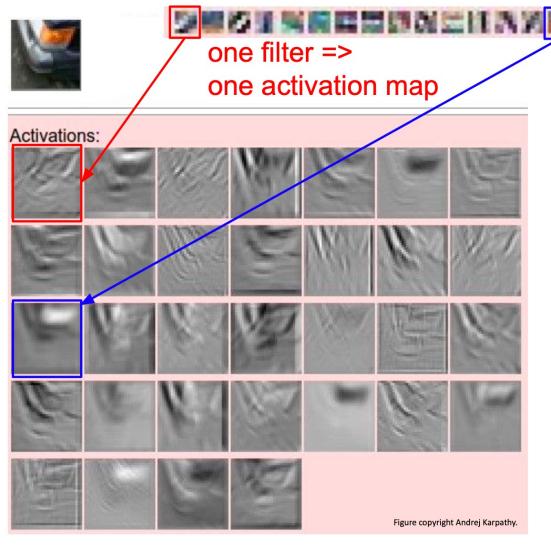


Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Preview





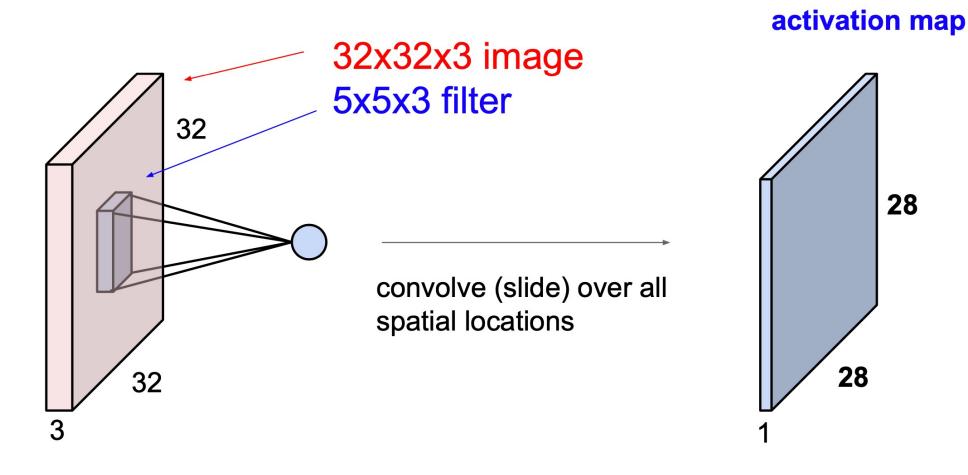
example 5x5 filters (32 total)

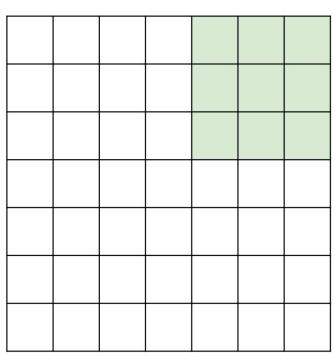
We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

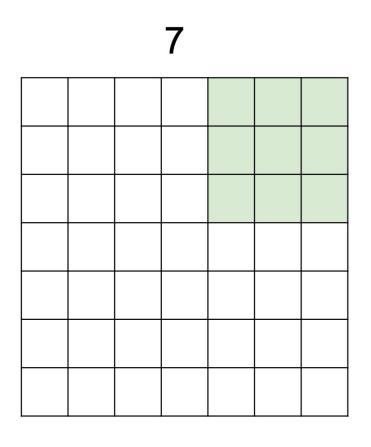
preview: RELU RELU RELU RELU RELU CONV CONV CONV CONV CONV CONV FC car truck airplane ship horse



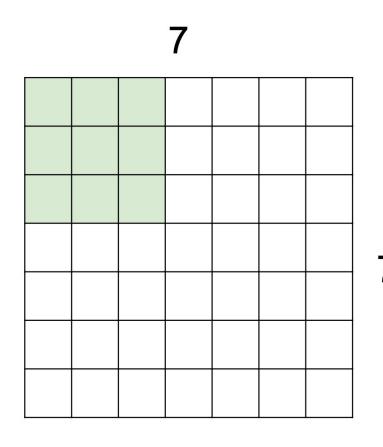


7x7 input (spatially) assume 3x3 filter

=> 5x5 output



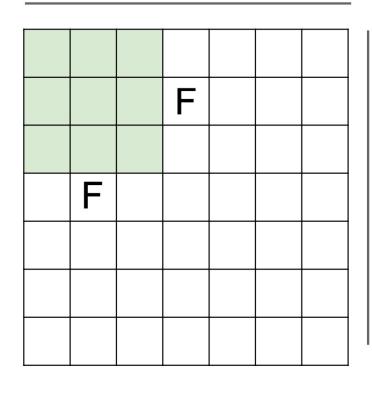
7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!



7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

N



Output size:

(N - F) / stride + 1

e.g.
$$N = 7$$
, $F = 3$:

stride
$$1 \Rightarrow (7 - 3)/1 + 1 = 5$$

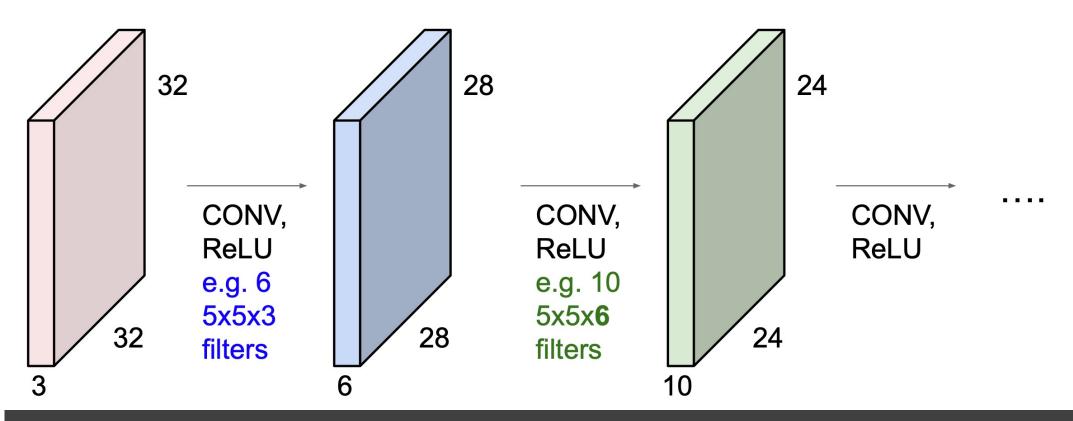
stride
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$$

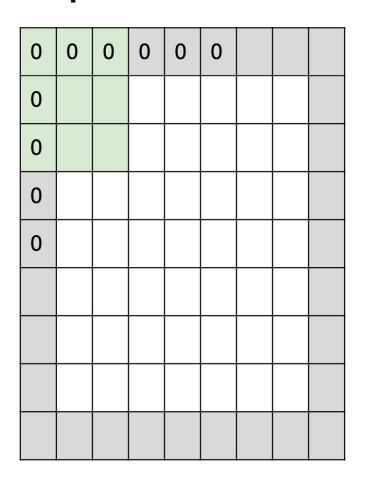
N

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.



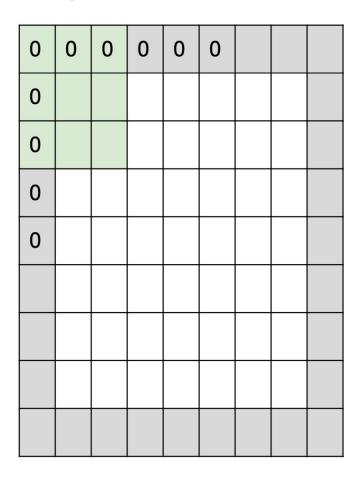
In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

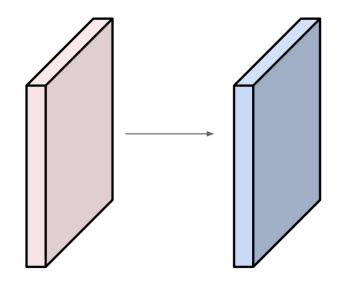


e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

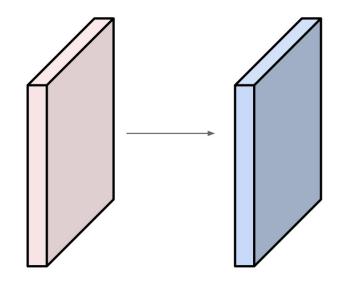
Input volume: **32x32x3**10 5x5 filters with stride 1, pad 2



Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

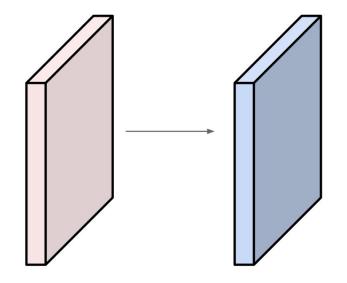


Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

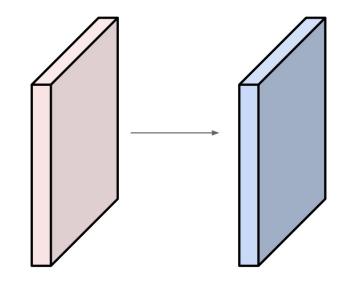


Number of parameters in this layer?

=> 76*10 = **760**

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2



Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

INTELLIGENT NETWORKING & SYSTEM LAB. © 2021

(+1 for bias)

Convolution layer: summary

Common settings:

Let's assume input is W₁ x H₁ x C

Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of W₂ x H₂ x K where:

$$-W_2 = (W_1 - F + 2P)/S + 1$$

-
$$H_2^- = (H_1 - F + 2P)/S + 1$$

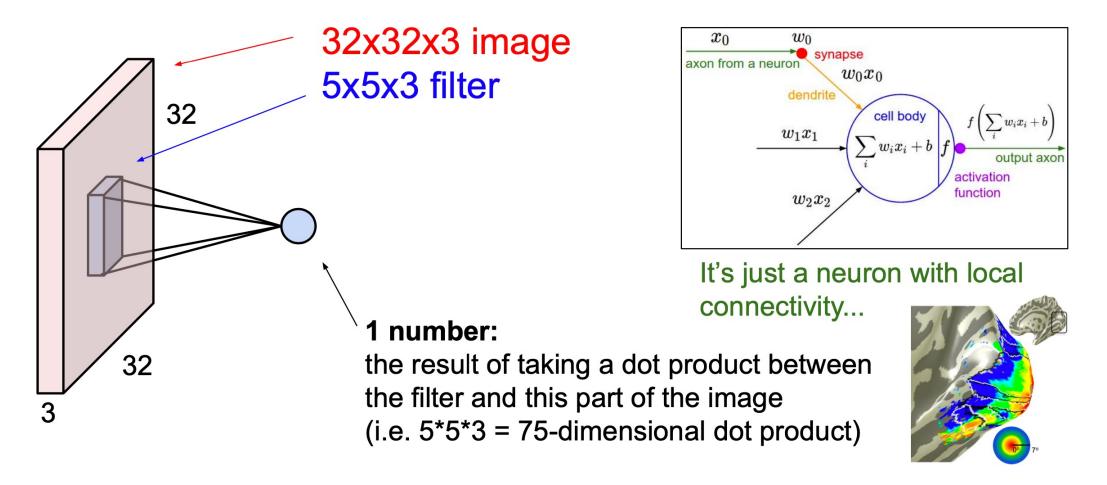
Number of parameters: F2CK and K biases

$$- F = 3, S = 1, P = 1$$

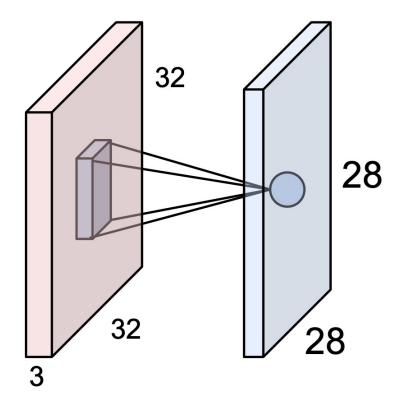
$$- F = 5, S = 1, P = 2$$

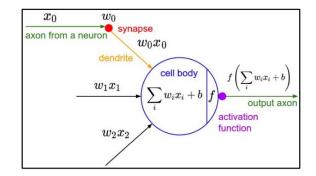
-
$$F = 1, S = 1, P = 0$$

The brain/neuron view of CONV Layer



Receptive field



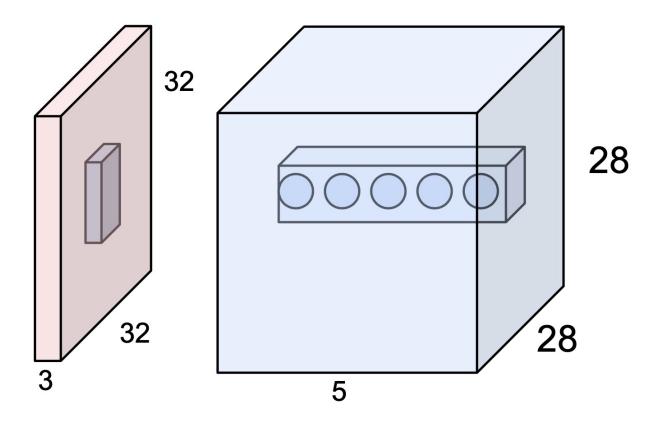


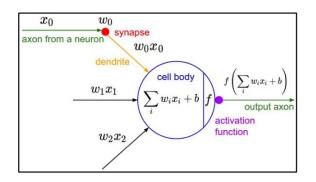
An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

The brain/neuron view of CONV Layer

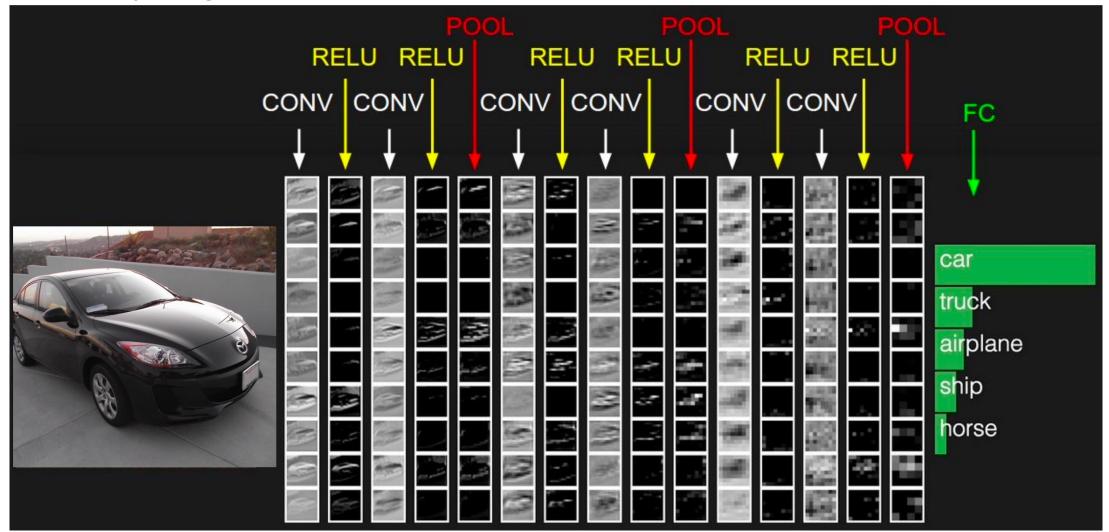




E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

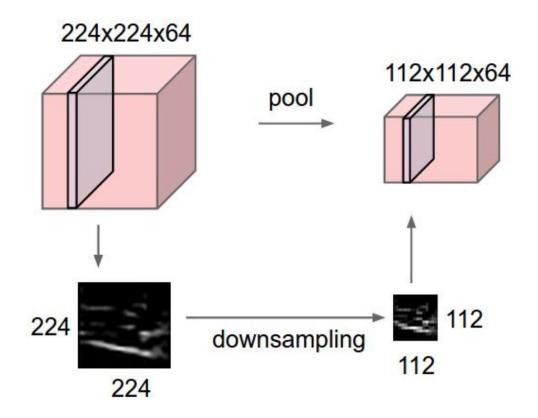
There will be 5 different neurons all looking at the same region in the input volume

two more layers to go: POOL/FC



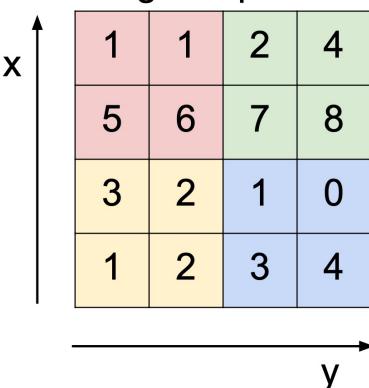
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:



MAX POOLING

Single depth slice



max pool with 2x2 filters and stride 2

6	8
3	4

Pooling layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 2 hyperparameters:

- The spatial extent F
- The stride S

This will produce an output of $W_2 \times H_2 \times C$ where:

$$- W_2 = (W_1 - F)/S + 1$$

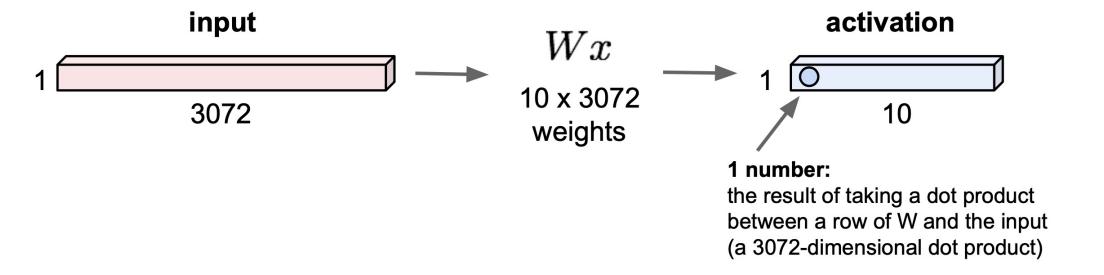
-
$$H_2^- = (H_1 - F)/S + 1$$

Number of parameters: 0

Fully Connected Layer

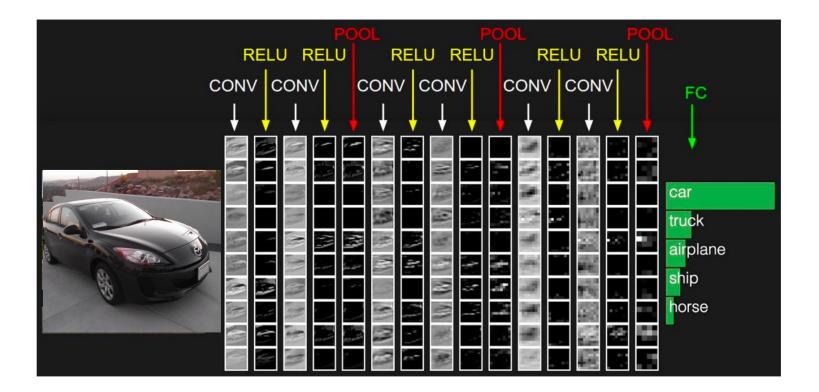
32x32x3 image -> stretch to 3072 x 1

Each neuron looks at the full input volume



Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks



Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like
 [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet have challenged this paradigm

END